首页 > 其他分享 >【flink番外篇】5、flink的window(介绍、分类、函数及Tumbling、Sliding、session窗口应用)介绍及示例(3)- 基于数量的滚动和滑动、会话窗口

【flink番外篇】5、flink的window(介绍、分类、函数及Tumbling、Sliding、session窗口应用)介绍及示例(3)- 基于数量的滚动和滑动、会话窗口

时间:2023-12-28 13:37:54浏览次数:34  
标签:窗口 示例 flink streaming api import apache org



文章目录

  • Flink 系列文章
  • 一、maven依赖
  • 二、示例:基于数量的滚动窗口与滑动窗口
  • 1、滚动窗口实现地铁进站口人数
  • 1)、实现
  • 2)、验证步骤
  • 2、滑动窗口实现地铁进站口人数
  • 1)、实现
  • 2)、验证步骤
  • 三、示例:会话窗口
  • 1、实现
  • 2、验证步骤



本文介绍了Flink window基于数量的滚动、滑动窗口和会话窗口示例,其中包含详细的验证步骤与验证结果。


一、maven依赖

<properties>
    <encoding>UTF-8</encoding>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <java.version>1.8</java.version>
    <scala.version>2.12</scala.version>
    <flink.version>1.17.0</flink.version>
</properties>

<dependencies>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-clients_2.12</artifactId>
        <version>${flink.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-scala_2.12</artifactId>
        <version>${flink.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-java</artifactId>
        <version>${flink.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-scala_2.12</artifactId>
        <version>${flink.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java_2.12</artifactId>
        <version>${flink.version}</version>
    </dependency>

    <!-- 日志 -->
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>slf4j-log4j12</artifactId>
        <version>1.7.7</version>
        <scope>runtime</scope>
    </dependency>
    <dependency>
        <groupId>log4j</groupId>
        <artifactId>log4j</artifactId>
        <version>1.2.17</version>
        <scope>runtime</scope>
    </dependency>

    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <version>1.18.2</version>
        <scope>provided</scope>
    </dependency>
</dependencies>

二、示例:基于数量的滚动窗口与滑动窗口

1、滚动窗口实现地铁进站口人数

实现统计在最近5条消息中,各自进站口通过的人数数量,相同的key每出现5次进行统计

本示例仅以面向对象方式实现,一般实现在具体的开发中视情况而定。

1)、实现

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * @author alanchan 
 * 统计在最近5条消息中,各自进站口通过的人数数量,相同的key每出现5次进行统计
 */
public class TumblingCountWindowDemo {

	/**
	 * @param args
	 * @throws Exception
	 */
	public static void main(String[] args) throws Exception {
		// env
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

		// source
		// nc
		// 数据结构: 入口编号,人数
		// 12,50
		// 11,28
		DataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);

		// transformation
		SingleOutputStreamOperator<Subway> subwayDS = lines.map(new MapFunction<String, Subway>() {
			@Override
			public Subway map(String value) throws Exception {
				String[] arr = value.split(",");
				return new Subway(arr[0], Integer.parseInt(arr[1]));
			}
		});

//		KeyedStream<Subway, String> keyedDS = subwayDS.keyBy(Subway::getNo);

		KeyedStream<Subway, String> keyedDS = subwayDS.keyBy(new KeySelector<Subway, String>() {
			@Override
			public String getKey(Subway value) throws Exception {
				return value.getNo();
			}
		});

		// 统计在最近5条消息中,各自进站口通过的人数数量,相同的key每出现5次进行统计
		SingleOutputStreamOperator<Subway> result1 = keyedDS.countWindow(5).sum("userCount");
		
		// sink
		result1.print();
		
		// execute
		env.execute();

	}

}

2)、验证步骤

1、启动nc

nc -lk 9999

2、启动应用程序

3、nc控制台输入

[alanchan@server2 src]$ nc -lk 9999
1,5
1,6
1,2
1,4
2,4
3,6
23,11
1,8

4、查看应用程序控制台输出

通过查看输出结果与预期一致。

【flink番外篇】5、flink的window(介绍、分类、函数及Tumbling、Sliding、session窗口应用)介绍及示例(3)- 基于数量的滚动和滑动、会话窗口_flink sql

2、滑动窗口实现地铁进站口人数

统计在最近5条消息中,各自进站口通过的人数数量,相同的key每出现3次进行统计

本示例仅以面向对象方式实现,一般实现在具体的开发中视情况而定。

1)、实现

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * @author alanchan
 *
 */
public class SlidingCountWindowDemo {

	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {

		// env
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

		// source
		// nc
		// 数据结构: 入口编号,人数
		// 12,50
		// 11,28
		DataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);

		// transformation
		SingleOutputStreamOperator<Subway> subwayDS = lines.map(new MapFunction<String, Subway>() {
			@Override
			public Subway map(String value) throws Exception {
				String[] arr = value.split(",");
				return new Subway(arr[0], Integer.parseInt(arr[1]));
			}
		});

//				KeyedStream<Subway, String> keyedDS = subwayDS.keyBy(Subway::getNo);

		KeyedStream<Subway, String> keyedDS = subwayDS.keyBy(new KeySelector<Subway, String>() {
			@Override
			public String getKey(Subway value) throws Exception {
				return value.getNo();
			}
		});

		// 统计在最近5条消息中,各自进站口通过的人数数量,相同的key每出现3次进行统计
//		public WindowedStream<T, KEY, GlobalWindow> countWindow(long size, long slide) {
//			return window(GlobalWindows.create())
//					.evictor(CountEvictor.of(size))
//					.trigger(CountTrigger.of(slide));
//		}
		SingleOutputStreamOperator<Subway> result1 = keyedDS.countWindow(5, 3).sum("userCount");

		// sink
		result1.print();

		// execute
		env.execute();
	}

}

2)、验证步骤

1、启动nc

nc -lk 9999

2、启动应用程序

3、nc控制台输入

[alanchan@server2 src]$ nc -lk 9999
1,2
1,3
2,3
3,4
1,2

4、查看应用程序控制台输出

通过查看输出结果与预期一致。

【flink番外篇】5、flink的window(介绍、分类、函数及Tumbling、Sliding、session窗口应用)介绍及示例(3)- 基于数量的滚动和滑动、会话窗口_flink_02

三、示例:会话窗口

实现设置会话超时时间为10s,如果上一个窗口有数据,10s内没有数据则触发上个窗口的计算。

1、实现

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;

/**
 * @author alanchan
 *
 */
public class TimeSessionWindowsDemo {

	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		// env
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

		// source
		DataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);

		// transformation
		SingleOutputStreamOperator<Subway> carDS = lines.map(new MapFunction<String, Subway>() {
			@Override
			public Subway map(String value) throws Exception {
				String[] arr = value.split(",");
				return new Subway(arr[0], Integer.parseInt(arr[1]));
			}
		});
		
		//KeyedStream<Subway, String> keyedDS = subwayDS.keyBy(Subway::getNo);
		KeyedStream<Subway, String> keyedDS = carDS.keyBy(new KeySelector<Subway, String>() {
			@Override
			public String getKey(Subway value) throws Exception {
				return value.getNo();
			}
		});

		// 设置会话超时时间为10s,10s内没有数据则触发上个窗口的计算,如果上一个窗口有数据
		SingleOutputStreamOperator<Subway> result = keyedDS.window(ProcessingTimeSessionWindows.withGap(Time.seconds(10))).sum("userCount");
		
		// sink
		result.print();

		// execute
		env.execute();

	}

}

2、验证步骤

1、启动nc

nc -lk 9999

2、启动应用程序

3、nc控制台输入

[alanchan@server2 src]$ nc -lk 9999
1,2
1,3
2,3
3,4
1,2

4、查看应用程序控制台输出

通过查看输出结果与预期一致。

【flink番外篇】5、flink的window(介绍、分类、函数及Tumbling、Sliding、session窗口应用)介绍及示例(3)- 基于数量的滚动和滑动、会话窗口_大数据_03

以上,本文介绍了Flink window基于数量的滚动、滑动窗口和会话窗口示例,其中包含详细的验证步骤与验证结果。

标签:窗口,示例,flink,streaming,api,import,apache,org
From: https://blog.51cto.com/alanchan2win/9013132

相关文章