主成分分析
rm (list = ls ())
library(vegan)
library(tidyverse)
library(ggalt)
library(car)
library(ggforce)
library(ggpubr)
library(patchwork)
# 2. 定义所需的函数。
pairwise.adonis1 <- function(x, factors, p.adjust.m) { #定义了一个名为pairwise.adonis1的函数,该函数接受三个参数:x,factors和p.adjust.m
x = as.matrix(x)
co = as.matrix(combn(unique(factors), 2))
pairs <- F.Model <- R2 <- p.value <- c()
for (elem in 1:ncol(co)) {
ad = adonis(x[factors %in% c(as.character(co[1, elem]), as.character(co[2, elem])),
factors %in% c(as.character(co[1, elem]), as.character(co[2, elem]))] ~
factors[factors %in% c(as.character(co[1, elem]), as.character(co[2, elem]))], permutations = 999)
pairs <- c(pairs, paste(co[1, elem], 'vs', co[2, elem]))
F.Model <- c(F.Model, ad$aov.tab[1, 4])
R2 <- c(R2, ad$aov.tab[1, 5])
p.value <- c(p.value, ad$aov.tab[1, 6])
}
# p值调整
p.adjusted = p.adjust(p.value, method = p.adjust.m)
pairw.res = data.frame(pairs, F.Model, R2, p.value, p.adjusted)
return(pairw.res)
}
# 3. 读取和处理数据。
setwd("C:\\Users\\Administrator\\Desktop\\PCA")
otu <- read.table("./otu_table.txt", row.names = 1, sep = "\t", header = TRUE) %>% as.data.frame()
map <- read.table("./metadata3-1.txt", sep = "\t", header = TRUE)
colnames(map)[1] <- "ID"
row.names(map) <- map$ID
idx <- rownames(map) %in% colnames(otu)
map1 <- map[idx,]
otu <- otu[, rownames(map1)]
# 4. 进行adonis分析并计算统计值。
bray_curtis <- vegan::vegdist(t(otu), method = "bray", na.rm = TRUE)
ado <- adonis(bray_curtis ~ map1$Group, permutations = 999, method = "bray") #进行了Adonis分析。
R2_value <- round(as.data.frame(ado$aov.tab[5])[1, 1], 3)
p_v_value <- as.data.frame(ado$aov.tab[6])[1, 1]
title <- paste("Adonis:R^2 = ", R2_value, " P_value = ", p_v_value, sep = "")
# 5. 绘制PCA图。
#otu_centered <- scale(t(otu), scale = FALSE) # 对数据进行中心化处理
otu_standardized <- scale(t(otu), scale = TRUE) # 对数据进行标准化处理
pca <- prcomp(otu_standardized) # 使用prcomp函数进行了主成分分析(PCA)
#pca <- prcomp(t(otu)) # 使用prcomp函数进行了主成分分析(PCA)
summary_pca <- summary(pca) # 获取PCA的详细结果
points <- as.data.frame(pca$x) %>% dplyr::rename(x = "PC1", y = "PC2") # 将PCA的结果转换为数据框,并重命名了列名.
# pca$x是PCA结果中的坐标,dplyr::rename(x = "PC1", y = "PC2")将列名"PC1"和"PC2"改为"x"和"y"。
eig <- pca$eig
points <- cbind(points, map1[match(rownames(points), map1$ID),]) # 将map1数据框中的元数据添加到了PCA的结果中。
n <- 0.85
colors <- c("d0"="#00BFFF","d0.5"="#00BFFF","d1"="#00BFFF","d3"="#00BFFF","d5"="#00BFFF","d8"="#00BFFF","d10"="#00BFFF","W0"="#FF4500","W0.5"="#FF4500","W1"="#FF4500","W3"="#FF4500","W5"="#FF4500","W8"="#FF4500","W10"="#FF4500")
# 定义了颜色和形状的映射关系,用于后续的可视化。
shapes <- c("d0"=21, "d0.5"=21, "d1"=21, "d3"=21, "d5"=21,"d8"=21,"d10"=21,
"W0"=21, "W0.5"=21, "W1"=21, "W3"=21, "W5"=21,"W8"=21,"W10"=21)
levels_order <- c("d0", "d0.5", "d1", "d3", "d5", "d8", "d10","W0","W0.5","W1","W3","W5","W8","W10") #定义顺序
points$Group <- factor(points$Group, levels = levels_order)
# 在ggplot中使用这些形状
p1 <- ggplot(points, aes(x = x, y = y, fill = Group, shape = Group)) +
geom_point(alpha = .7, size = 6) +
scale_shape_manual(values = shapes) +
scale_fill_manual(values = colors) +
labs(x = paste("PC1 (", format(summary_pca$importance[2, 1] * 100, digits = 4), "%)", sep = ""),
y = paste("PC2 (", format(summary_pca$importance[2, 2] * 100, digits = 4), "%)", sep = ""), title = title) +
geom_mark_ellipse(aes(fill = Group, label = Group), alpha = 0.1, color = "grey", linetype = 3) +
theme_bw() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text = element_text(color = "black", size = 9),
axis.title = element_text(size = 20), # 改变坐标轴标题的大小
legend.text = element_text(size = 14), # 改变图例文字的大小
legend.key.size = unit(1, "cm")) +# 改变图例图形的大小
coord_cartesian(xlim = c(-max(abs(points$x)) * 1.1, max(abs(points$x)) * 1.1), ylim = c(-max(abs(points$y)) * 1.1, max(abs(points$y)) * 1.1)) + # 改变x轴和y轴的范围
geom_vline(xintercept = 0, linetype = "dashed", color = "black") + # 添加垂直虚线
geom_hline(yintercept = 0, linetype = "dashed", color = "black") # 添加水平虚线
# 显示绘制的图
p1
# 6. 输出pairwise adonis结果。
pair_bray_adonis <- pairwise.adonis1(bray_curtis, map1$Group, p.adjust.m = "bonferroni") #进行了成对的Adonis分析
# 存储为文本文件
write.table(as.data.frame(pair_bray_adonis), "table.txt", sep = "\t", quote = FALSE, row.names = FALSE) #将Adonis分析的结果保存为了一个文本文件。
tab2 <- ggtexttable(pair_bray_adonis, rows = NULL)
p2 <- tab2
p2
ggsave(filename = "PCA_plot3.png", plot = p1, width = 12, height = 10, units = "in", dpi = 600)
1. 初始化和加载库
rm(list = ls())
:清除R环境中的所有变量,以便开始新的分析。library(...)
:加载所需的R包。其中,vegan
用于生态多样性分析,tidyverse
提供了数据处理和可视化的强大工具,ggalt
、car
、ggforce
、ggpubr
和patchwork
用于数据可视化和图形展示。
2. 定义函数 pairwise.adonis1
这个函数用于执行成对的Adonis分析(一种非参数多元方差分析方法)。它接收三个参数:数据矩阵x
、因子factors
和p值调整方法p.adjust.m
。函数内部,它首先将数据转换为矩阵格式,然后对每一对唯一的因子组合进行Adonis分析,最后返回一个包含分析结果的数据框。
3. 数据读取和处理
setwd()
:设置工作目录。read.table()
:读取OTU表和元数据文件。OTU表包含样本和操作分类单元(OTU)的计数,元数据文件包含样本信息。dplyr::rename()
、dplyr::filter()
等:对数据进行处理,使其适合后续分析。
4. Adonis分析和PCA
- 使用
vegan::vegdist()
计算基于Bray-Curtis距离的距离矩阵。 - 进行Adonis分析,以测试群落组成是否因Group而异。
- 进行PCA分析,这是一种降维技术,用于探索样本间的关系。
5. 数据可视化
- 使用
ggplot2
和相关包创建PCA图,展示样本在主要成分上的分布。 - 对PCA结果中的点进行美化和标记,以提供更多的可视化信息。
6. 输出结果
- 执行
pairwise.adonis1
函数,以获得成对Adonis分析的结果。 - 将结果保存为文本文件,并使用
ggpubr
创建一个表格,显示成对Adonis分析的结果。 - 使用
ggsave
保存PCA图像。
标签:分析,dplyr,Adonis,成分,library,可视化,PCA From: https://www.cnblogs.com/wzbzk/p/17912215.html