项目搭建参考
Java实现对Hadoop HDFS的API操作
1.驱动类
package cn.coreqi.mapreduce.tool;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.util.Arrays;
public class WordCountDriver {
private static Tool tool;
public static void main(String[] args) throws Exception {
// 创建配置
Configuration conf = new Configuration();
switch (args[0]){
case "wordcount":
tool = new WordCount();
break;
default:
throw new RuntimeException("no such tool " + args[0]);
}
// 执行程序
int run = ToolRunner.run(conf, tool, Arrays.copyOfRange(args, 1, args.length));
System.exit(run);
}
}
2.核心逻辑
package cn.coreqi.mapreduce.tool;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import java.io.IOException;
public class WordCount implements Tool {
private Configuration conf;
// 核心驱动(conf需要传入)
@Override
public int run(String[] strings) throws Exception {
// 1.获取job
Job job = Job.getInstance(conf);
// 2.设置jar包路径
job.setJarByClass(WordCountDriver.class); //通过反射指定类所在的包地址来获取当前jar包的路径
// 3.关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4.设置mapper输出的KV类型[因为泛型擦除的问题,所以需要手动指定类型]
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5. 设置最终输出(reducer)的KV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6. 设置输入路径和输出路径(读取命令行参数集群模式运行)
FileInputFormat.setInputPaths(job,new Path(strings[0]));
FileOutputFormat.setOutputPath(job,new Path(strings[1]));
// 7.提交job,获取更多返回信息
return job.waitForCompletion(true) ? 0 : 1;
}
@Override
public void setConf(Configuration configuration) {
this.conf = configuration;
}
@Override
public Configuration getConf() {
return conf;
}
// mapper
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
// 将一行的内容转换成字符串
String line = value.toString();
// 切割内容
String[] words = line.split(" ");
// 循环写出
for (String word : words) {
outK.set(word);
context.write(outK,outV);
}
}
}
//reducer
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
//累加
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
//写出
context.write(key,outV);
}
}
}
标签:Tool,Hadoop,Yarn,hadoop,job,org,apache,import,class
From: https://www.cnblogs.com/fanqisoft/p/17909889.html