from sklearn.neighbors import KDTree from os.path import join, exists, dirname, abspath import numpy as np import os, glob, pickle import sys BASE_DIR = dirname(abspath(__file__)) ROOT_DIR = dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(ROOT_DIR) from helper_ply import write_ply from helper_tool import DataProcessing as DP grid_size = 0.5 #我的点云数据集比较密,所以下采样间隔取大一点 dataset_path = '/data/semantic3d/original_data' original_pc_folder = join(dirname(dataset_path), 'original_ply') sub_pc_folder = join(dirname(dataset_path), 'input_{:.3f}'.format(grid_size)) os.mkdir(original_pc_folder) if not exists(original_pc_folder) else None os.mkdir(sub_pc_folder) if not exists(sub_pc_folder) else None for pc_path in glob.glob(join(dataset_path, '*.txt')): print(pc_path) # file_name = pc_path.split('/')[-1][:-4] file_name=os.path.basename(pc_path)[:-4] # check if it has already calculated if exists(join(sub_pc_folder, file_name + '_KDTree.pkl')): continue #直接使用numpy加载txt格式的点云文件 pc=np.loadtxt(pc_path) #我的数据集中训练和测试集都是x,y,z,r,g,b,label的存储格式 labels=pc[:,-1].astype(np.uint8) full_ply_path = join(original_pc_folder, file_name + '.ply') # Subsample to save space sub_points, sub_colors, sub_labels = DP.grid_sub_sampling(pc[:, :3].astype(np.float32), pc[:, 3:6].astype(np.uint8), labels, 0.01) sub_labels = np.squeeze(sub_labels) write_ply(full_ply_path, (sub_points, sub_colors, sub_labels), ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) # save sub_cloud and KDTree file sub_xyz, sub_colors, sub_labels = DP.grid_sub_sampling(sub_points, sub_colors, sub_labels, grid_size) sub_colors = sub_colors / 255.0 sub_labels = np.squeeze(sub_labels) sub_ply_file = join(sub_pc_folder, file_name + '.ply') write_ply(sub_ply_file, [sub_xyz, sub_colors, sub_labels], ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) search_tree = KDTree(sub_xyz, leaf_size=50) kd_tree_file = join(sub_pc_folder, file_name + '_KDTree.pkl') with open(kd_tree_file, 'wb') as f: pickle.dump(search_tree, f) proj_idx = np.squeeze(search_tree.query(sub_points, return_distance=False)) proj_idx = proj_idx.astype(np.int32) proj_save = join(sub_pc_folder, file_name + '_proj.pkl') with open(proj_save, 'wb') as f: pickle.dump([proj_idx, labels], f)
标签:sub,labels,Randla,pc,file,path,格式,net,folder From: https://www.cnblogs.com/yhlx125/p/17904524.html