首页 > 其他分享 >P2053 [SCOI2007] 修车

P2053 [SCOI2007] 修车

时间:2023-12-14 14:45:15浏览次数:28  
标签:fir cnt SCOI2007 int 修车 add P2053 include define

题意

有 \(n\) 个工人,\(m\) 个工作。

每个人给每个工作有 \(t_{i, j}\) 的花费。

求每个工作的最小平均花费。

Sol

直接连边跑费用流不好搞。

考虑将每种工人在不同时间做的工作暴力建点。

枚举 \(k\) 表示第 \(i\) 个工人在倒数第 \(k\) 个做 \(j\) 工作。

这样仍然不好考虑贡献,可以使用类似于贡献提前的思想。

将朴素的贡献改为当前工作的等待时间。

也就是:\(t_{i, j} \times k\)。

直接建边跑费用流即可。

Code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#include <queue>
#include <bitset>
#define int long long
#define pii pair <int, int>
using namespace std;
#ifdef ONLINE_JUDGE

#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;

#endif
int read() {
	int p = 0, flg = 1;
	char c = getchar();
	while (c < '0' || c > '9') {
		if (c == '-') flg = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9') {
		p = p * 10 + c - '0';
		c = getchar();
	}
	return p * flg;
}
void write(int x) {
	if (x < 0) {
		x = -x;
		putchar('-');
	}
	if (x > 9) {
		write(x / 10);
	}
	putchar(x % 10);
}
#define fi first
#define se second

const int N = 3005, M = 3e5 + 5, inf = 1e18;


namespace G {

array <int, N> fir;
array <int, M> nex, to, len, cap;
int cnt = 1;
void add(int x, int y, int z, int w) {
	cnt++;
	nex[cnt] = fir[x];
	to[cnt] = y;
	cap[cnt] = z;
	len[cnt] = w;
	fir[x] = cnt;
}
void _add(int x, int y, int z, int w) {
	add(x, y, z, w);
	add(y, x, 0, -w);
}

}

namespace Mfl {

array <int, N> dis, cur;
queue <int> q;

bitset <N> vis;

bool spfa(pii st) {
	dis.fill(inf), vis = 0;
   	dis[st.fi] = 0, vis[st.fi] = 1;
	q.push(st.fi);
	while (!q.empty()) {
		int u = q.front();
		q.pop();
		vis[u] = 0;
		for (int i = G::fir[u]; i; i = G::nex[i]) {
			if (!G::cap[i] || dis[G::to[i]] <= dis[u] + G::len[i]) continue;
			dis[G::to[i]] = dis[u] + G::len[i];
			if (!vis[G::to[i]]) q.push(G::to[i]), vis[G::to[i]] = 1;
		}
	}
	return dis[st.se] != inf;
}

int dfs(int x, int augcd, pii st) {
	if (x == st.se) return augcd;
	vis[x] = 1;
	int augc = augcd;
	for (int &i = cur[x]; i; i = G::nex[i]) {
		if (vis[G::to[i]] || !G::cap[i] || dis[G::to[i]] != dis[x] + G::len[i]) continue;
		int flow = dfs(G::to[i], min(augc, G::cap[i]), st);
		augc -= flow;
		G::cap[i] -= flow, G::cap[i ^ 1] += flow;
		if (!augc) break;
	}
	vis[x] = 0;
	return augcd - augc;
}

pii dinic(pii st) {
	pii ans(0, 0);
	while (spfa(st)) {
		copy(G::fir.begin(), G::fir.end(), cur.begin());
		vis = 0;
		int flow = dfs(st.fi, inf, st);
		ans.fi += flow, ans.se += flow * dis[st.se];
	}
	return ans;
}

}

signed main() {
	int m = read(), n = read();
	pii st = make_pair(n + n * m + 1, n + n * m + 2);
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			int x = read();
			for (int k = 1; k <= n; k++)
				G::_add(i, j * n + k, 1, k * x);
		}
	}
	for (int i = 1; i <= n; i++) G::_add(st.fi, i, 1, 0);
	for (int i = 1; i <= n * m; i++) G::_add(i + n, st.se, 1, 0);
	printf("%.2lf\n", (double)Mfl::dinic(st).se / n);
	return 0;
}

标签:fir,cnt,SCOI2007,int,修车,add,P2053,include,define
From: https://www.cnblogs.com/cxqghzj/p/17901127.html

相关文章

  • [SCOI2007] 修车
    [SCOI2007]修车题目描述同一时刻有\(N\)位车主带着他们的爱车来到了汽车维修中心。维修中心共有\(M\)位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这\(M\)位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。说明:顾客的等待时间......
  • P4163 [SCOI2007]排列
    Problem给一个数字串\(s\)和正整数\(d\),统计\(s\)有多少种不同的排列能被\(d\)整除(可以有前导\(0\))。多组数据。\(\left\verts\right\vert\le10,1\led\le1000,1\let\le15\)Input第一行一个整数\(t\),表示数据组数。接下来\(t\)行,每行一个数字串\(s\)......
  • NC20259 [SCOI2007]降雨量
    题目链接题目题目描述我们常常会说这样的话:“X年是自Y年以来降雨量最多的”。它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X年。例如2002,2003,2004和2005年的降雨量分别为4920,5901,2832和3890,则可以说“2005年是自2003年以来最多的”,但不能说“2005年是自......
  • P2470 [SCOI2007]压缩
    传送门区间DP好题,看到这题很容易想到设\(f[i][j]\)为区间\(i\)~\(j\)内的最短折叠,那么转移方程就为:\[f[i][j]=min_{k=i}^{j-1}(f[i][j],f[i][k]+f[k+1][j])\]然鹅这......
  • 【SCOI2007】k短路(A_)
    考虑用\(A^*\)维护这个东西,由于其它题解都讲得很清楚\(A^*\)的原理了,我就在这里说一下这题需要注意的地方。按照\(A^*\)的套路,我们要把估价函数设为当前点到\(b\)......