首页 > 其他分享 >1465.

1465.

时间:2023-12-13 23:32:27浏览次数:24  
标签:切割 int max horizontalCuts i64 1465 verticalCuts

矩形蛋糕的高度为 h 且宽度为 w,给你两个整数数组 horizontalCuts 和 verticalCuts,其中: horizontalCuts[i] 是从矩形蛋糕顶部到第 i 个水平切口的距离 verticalCuts[j] 是从矩形蛋糕的左侧到第 j 个竖直切口的距离

请你按数组 horizontalCuts 和 verticalCuts 中提供的水平和竖直位置切割后,请你找出 面积最大 的那份蛋糕,并返回其 面积 。由于答案可能是一个很大的数字,因此需要将结果 对 109 + 7 取余 后返回。

示例 1:

1465._Math

输入:h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3]
输出:4

解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色的那份蛋糕面积最大。

示例 2:

1465._时间复杂度_02

输入:h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1]
输出:6

解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色和黄色的两份蛋糕面积最大。 示例 3:

输入:h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3]
输出:9

提示:

2 <= h, w <= 109
1 <= horizontalCuts.length <= min(h - 1, 105)
1 <= verticalCuts.length <= min(w - 1, 105)
1 <= horizontalCuts[i] < h
1 <= verticalCuts[i] < w

题目数据保证 horizontalCuts 中的所有元素各不相同 题目数据保证 verticalCuts 中的所有元素各不相同

题目给出一个高度为 hhh 长度为 www 的矩形蛋糕,我们需要按照水平切割方案 horizontalCuts\textit{horizontalCuts}horizontalCuts,和竖直切割方案 verticalCuts\textit{verticalCuts}verticalCuts 对蛋糕进行切割,其中 horizontalCuts[i]\textit{horizontalCuts}[i]horizontalCuts[i] 表示从矩形蛋糕顶部水平往下距离 horizontalCuts[i]\textit{horizontalCuts}[i]horizontalCuts[i] 的位置进行切割,verticalCuts[j]\textit{verticalCuts}[j]verticalCuts[j] 表示从矩形蛋糕最左侧往右距离 verticalCuts[j]\textit{verticalCuts}[j]verticalCuts[j] 的位置进行切割。现在我们需要求出切割后的面积最大的蛋糕面积对 109+710 ^ 9 + 710 9 +7 取模后的值。

首先,我们需要将水平切割和竖直切割的位置数组 horizontalCuts\textit{horizontalCuts}horizontalCuts 和 verticalCuts\textit{verticalCuts}verticalCuts 进行排序,并且在数组的开头添加 000 和结尾添加对应的矩形边界值。这是为了确保我们考虑到所有的切割位置,包括矩形的边缘。然后在排序后的切割位置数组中,我们可以计算相邻切割位置之间的间隔,以找出水平和竖直切割的最大间隔。因为每个间隔代表了一块蛋糕的尺寸,水平和竖直间隔的乘积就是对应蛋糕块的面积,所以最大面积由最大水平间隔和最大竖直间隔相乘得到。最后我们返回最大面积对 109+710^9 + 710 9+7 的取模即可。

1465._时间复杂度_03

C++

class Solution {
public:
    int maxArea(int h, int w, vector<int>& horizontalCuts, vector<int>& verticalCuts) {
        horizontalCuts.push_back(0);
        horizontalCuts.push_back(h);
        verticalCuts.push_back(0);
        verticalCuts.push_back(w);
        sort(horizontalCuts.begin(), horizontalCuts.end());
        sort(verticalCuts.begin(), verticalCuts.end());
        int x = 0, y = 0;
        for (int i = 1; i < horizontalCuts.size(); ++i) {
            x = max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
        }
        for (int i = 1; i < verticalCuts.size(); ++i) {
            y = max(y, verticalCuts[i] - verticalCuts[i - 1]);
        }
        const int mod = 1e9 + 7;
        return (1ll * x * y) % mod;
    }
};

这个代码实现了一个计算蛋糕切割后最大面积的算法。它的思路是,首先将水平切割和竖直切割的位置信息添加到对应的数组中,然后对数组进行排序。接着,通过遍历这些切割位置,计算相邻两个位置之间的距离,从而得到切割后的矩形条的最大宽度和最大高度。最后,计算最大面积并返回。

这个算法的时间复杂度是O(nlogn),其中n是切割位置的数量。在排序时,使用了额外的O(n)的空间来存储排序后的数组。因此,这个算法的空间复杂度也是O(n)。

这个算法的优点是,它通过排序和遍历操作,直接得到了切割后矩形的最大宽度和最大高度,从而避免了复杂的动态规划计算。同时,它也使用了取模运算来防止结果溢出,从而保证了答案的正确性。

需要注意的是,这个算法假设切割位置的信息已经按照顺序给出了,并且没有考虑切割位置之间的间隔。如果存在间隔,需要对输入进行一些预处理,比如在每个切割位置之间插入0或其他默认值。此外,对于非数值型的切割位置,需要将其转换为数值型才能使用这个算法。

时间复杂度 O(mlog⁡m+nlog⁡n)O(m\log m + n\log n)O(mlogm+nlogn),空间复杂度 O(max⁡(log⁡m,log⁡n))O(\max(\log m, \log n))O(max(logm,logn))

其中 mmm 和 nnn 分别为 horizontalCuts 和 verticalCuts 的长度。

python

class Solution:
    def maxArea(
        self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]
    ) -> int:
        horizontalCuts.extend([0, h])
        verticalCuts.extend([0, w])
        horizontalCuts.sort()
        verticalCuts.sort()
        x = max(b - a for a, b in pairwise(horizontalCuts))
        y = max(b - a for a, b in pairwise(verticalCuts))
        return (x * y) % (10**9 + 7)

首先,函数将矩形的起始和结束位置(0,0)和(h,w)添加到各自的切割列表中。这样做是为了确保这些位置也被视为可能的切割点。

然后,这两个列表分别进行排序。这是为了确保在查找可能的切割点时,它们是按照从左到右的顺序排列的。

接下来,函数使用pairwise函数从horizontalCuts和verticalCuts列表中分别生成一系列连续的切割点对,并计算相邻点之间的最大差值。这样做是为了找出可能的切割宽度和高度。

最后,函数返回这个最大面积值(使用取模操作,以防结果超过10^9+7)。

java

class Solution {
    public int maxArea(int h, int w, int[] horizontalCuts, int[] verticalCuts) {
        final int mod = (int) 1e9 + 7;
        Arrays.sort(horizontalCuts);
        Arrays.sort(verticalCuts);
        int m = horizontalCuts.length;
        int n = verticalCuts.length;
        long x = Math.max(horizontalCuts[0], h - horizontalCuts[m - 1]);
        long y = Math.max(verticalCuts[0], w - verticalCuts[n - 1]);
        for (int i = 1; i < m; ++i) {
            x = Math.max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
        }
        for (int i = 1; i < n; ++i) {
            y = Math.max(y, verticalCuts[i] - verticalCuts[i - 1]);
        }
        return (int) ((x * y) % mod);
    }
}

代码中使用了动态规划的思想,将原问题分解为子问题来求解。首先,对水平和垂直切割线进行排序,然后分别计算每一行和每一列的最长距离。接着,将矩形的宽度和高度减去最长的距离,得到剩余的宽度和高度。最后,取剩余宽度和高度中的最大值,即为路径的长度。

在代码实现中,使用了一个辅助函数dp来计算子问题的最优解。首先初始化两个dp数组,分别表示每一行和每一列的最长距离。然后遍历每一行和每一列,计算当前行或列的最长距离,并更新dp数组。最后返回路径的长度。

这个算法的时间复杂度为O(m*n),其中m和n分别为水平切割线和垂直切割线的数量。由于该算法只需要遍历一次切割线,因此时间复杂度可以进一步优化为O(min(m,n))。

GO

func maxArea(h int, w int, horizontalCuts []int, verticalCuts []int) int {
	horizontalCuts = append(horizontalCuts, []int{0, h}...)
	verticalCuts = append(verticalCuts, []int{0, w}...)
	sort.Ints(horizontalCuts)
	sort.Ints(verticalCuts)
	x, y := 0, 0
	const mod int = 1e9 + 7
	for i := 1; i < len(horizontalCuts); i++ {
		x = max(x, horizontalCuts[i]-horizontalCuts[i-1])
	}
	for i := 1; i < len(verticalCuts); i++ {
		y = max(y, verticalCuts[i]-verticalCuts[i-1])
	}
	return (x * y) % mod
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

RUST

impl Solution {
    pub fn max_area(h: i32, w: i32, mut horizontal_cuts: Vec<i32>, mut vertical_cuts: Vec<i32>) -> i32 {
        const MOD: i64 = 1_000_000_007;

        horizontal_cuts.sort();
        vertical_cuts.sort();

        let m = horizontal_cuts.len();
        let n = vertical_cuts.len();

        let mut x = i64::max(horizontal_cuts[0] as i64, h as i64 - horizontal_cuts[m - 1] as i64);
        let mut y = i64::max(vertical_cuts[0] as i64, w as i64 - vertical_cuts[n - 1] as i64);

        for i in 1..m {
            x = i64::max(x, horizontal_cuts[i] as i64 - horizontal_cuts[i - 1] as i64);
        }

        for i in 1..n {
            y = i64::max(y, vertical_cuts[i] as i64 - vertical_cuts[i - 1] as i64);
        }

        ((x * y) % MOD) as i32
    }
}

标签:切割,int,max,horizontalCuts,i64,1465,verticalCuts
From: https://blog.51cto.com/u_16076194/8807898

相关文章

  • 1465.
    矩形蛋糕的高度为h且宽度为w,给你两个整数数组horizontalCuts和verticalCuts,其中:horizontalCuts[i]是从矩形蛋糕顶部到第i个水平切口的距离verticalCuts[j]是从矩形蛋糕的左侧到第j个竖直切口的距离请你按数组horizontalCuts和verticalCuts中提供的水平和竖直位......
  • 1465. 切割后面积最大的蛋糕
    1.题目介绍矩形蛋糕的高度为h且宽度为w,给你两个整数数组horizontalCuts和verticalCuts,其中:\(\text{horizontalcuts[i]是从矩形蛋糕顶部到第i个水平切口的距离}\)\(\text{verticalCuts[j]是从赶形蛋糕的左侧到第j个贤盲切口的距离}\)请你按数组horizontalCuts......
  • 1465. Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts
    将数组排序之后,进行差分,然后选择各自最大的能够元素相乘,就能得到最大的蛋糕块了。注意按照题目要求,最终结果要取余数classSolution:defmaxArea(self,h:int,w:int,horizontalCuts:List[int],verticalCuts:List[int])->int:horizontalCuts.sort()......
  • MyBatis ORA-01465: 无效的十六进制数字
    MyBatis在插入Oralce时报:ORA-01465:无效的十六进制数字解决方法:#插入或更新时String->BLOB字段:RAWTOHEX(#{字段名})String->DATE:to_date(#{字段名},'yyyy-mm-......
  • HDU 1465(错排公式)
    不容易系列之一TimeLimit:2000/1000MS(Java/Others)    MemoryLimit:65536/32768K(Java/Others)TotalSubmission(s):9829    AcceptedSubmission(s):......
  • Fair Numbers CodeForces - 1465B
    FairNumbersCodeForces-1465B我们定义一个好数规则如下:它能够整除自己的每一个非零位。例如说,102是一个好数,因为它能整除1和2。282则不是,因为它不能整除8。......