再次被初中的自己搏杀,想到网络流去了
Link
Question
有 \(n\) 种花,第 \(i\) 种花有 \(a_i\) 个,求需要摆 \(m\) 朵花的方案数
Solution
定义 \(F[i][j]\) 表示前 \(i\) 种花,已经摆了 \(j\) 个的方案数
枚举第 \(i\) 种花需要摆多少个 \(k\)
所以 \(F[i][j]=\sum\limits_{k=0}^{min(j,a[i])} F[i-1][j-k]\)
答案就是 \(F[n][m]\)
Code
#include<bits/stdc++.h>
typedef long long LL;
using namespace std;
const LL TT=1e6+7;
const int maxn=1e2+4;
struct IO{
static const int S=1<<21;
char buf[S],*p1,*p2;int st[105],Top;
~IO(){clear();}
inline void clear(){fwrite(buf,1,Top,stdout);Top=0;}
inline void pc(const char c){Top==S&&(clear(),0);buf[Top++]=c;}
inline char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
inline IO&operator >> (char&x){while(x=gc(),x==' '||x=='\n'||x=='r');return *this;}
template<typename T>inline IO&operator >> (T&x){
x=0;bool f=0;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-') f^=1;ch=gc();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=gc();
f?x=-x:0;return *this;
}
inline IO&operator << (const char c){pc(c);return *this;}
template<typename T>inline IO&operator << (T x){
if(x<0) pc('-'),x=-x;
do{st[++st[0]]=x%10,x/=10;}while(x);
while(st[0]) pc('0'+st[st[0]--]);return *this;
}
}fin,fout;
int n,m;
int a[maxn];
LL F[maxn][maxn];
int main(){
fin>>n>>m;
for(int i=1;i<=n;i++) fin>>a[i];
F[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k<=min(j,a[i]);k++)
F[i][j]=(F[i][j]+F[i-1][j-k])%TT;
fout<<F[n][m]<<'\n';
return 0;
}
标签:ch,T404546,int,题解,亮亮的,while,种花,gc
From: https://www.cnblogs.com/martian148/p/17889149.html