import torchvision标签:11,loss,nn,30,train,2023,test,total,data From: https://www.cnblogs.com/wllovelmbforever/p/17868487.html
import torchvision.datasets as datasets
from torch import nn
from torch.utils.data import DataLoader
import torch
# 设置学习率和训练轮数
learning_rate = 1e-3
epoch = 50
# 准备数据集
train_data = datasets.ImageFolder('./data/train', transform=torchvision.transforms.Compose([
torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor()
]))
test_data = datasets.ImageFolder('./data/test', transform=torchvision.transforms.Compose([
torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor()
]))
train_data_size = len(train_data)
test_data_size = len(test_data)
train_dataloader = DataLoader(train_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
# 搭建神经网络
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(64, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 2 * 2, 128),
nn.Linear(128, 64),
nn.Linear(64, 5)
)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.model(x)
x = self.dropout(x)
return x
tudui = Tudui()
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(tudui.parameters(), lr=learning_rate)
total_train_step = 0
total_test_step = 0
for i in range(epoch):
print("-------第 {} 轮训练开始-------".format(i+1))
# 训练步骤开始
tudui.train()
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
# 测试步骤开始
tudui.eval()
total_test_loss = 0
correct_predictions = 0
total_samples = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
_, predicted = torch.max(outputs, 1)
correct_predictions += (predicted == targets).sum().item()
total_samples += targets.size(0)
print("整体测试集上的Loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(correct_predictions / total_samples))
total_test_step += 1
torch.save(tudui, "tudui_{}.pth".format(i))
print("模型已保存")