简单模拟即可:
class Solution { public: vector<int> findWordsContaining(vector<string>& words, char x) { int n = words.size(); vector<int> res; for(int i = 0; i < n; i ++ ) { auto &word = words[i]; for(auto ch: word) { if(ch == x) { res.push_back(i); break; } } } return res; } };
找规律, 最长连续子序列
class Solution { public: int maximizeSquareHoleArea(int n, int m, vector<int>& hBars, vector<int>& vBars) { int res = 0; int lh = hBars.size(), lv = vBars.size(); sort(hBars.begin(), hBars.end()); sort(vBars.begin(), vBars.end()); vector<int> f(lh, 1); vector<int> g(lv, 1); for(int i = 1; i < lh; i ++ ) { if(hBars[i] == hBars[i - 1] + 1) { f[i] = f[i - 1] + 1; } } for(int i = 1; i <lv; i ++ ) { if(vBars[i] == vBars[i - 1] + 1) { g[i] = g[i - 1] + 1; } } int vlen = 0, hlen = 0; for(int i = 0; i < lh; i ++ ) { if(hBars[i] != n + 2) vlen = max(vlen, f[i]); else vlen = max(vlen, f[i] - 1); } for(int i = 0; i < lv; i ++ ) { if(vBars[i] != m + 2) hlen = max(hlen, g[i]); else hlen = max(hlen, g[i] - 1); } cout << vlen << ' ' << hlen << endl; int lim = min(vlen, hlen); return (lim + 1) * (lim + 1); } };
递归搜索 -> 递推 -> 单调队列优化dp
class Solution: def minimumCoins(self, prices: List[int]) -> int: n = len(prices) @cache def dfs(i: int) -> int: if i > n: return 0 res = inf for j in range(i + 1, i * 2 + 2): res = min(res, dfs(j)) return res + prices[i - 1] return dfs(1)
class Solution: def minimumCoins(self, prices: List[int]) -> int: n = len(prices) f = [0] * (n + 1) for i in range(n, 0, -1): if i * 2 >= n: f[i] = prices[i - 1] else: f[i] = min(f[i + 1: i * 2 + 2]) + prices[i - 1] return f[1]
class Solution: def minimumCoins(self, prices: List[int]) -> int: n = len(prices) q = deque([(n + 1, 0)]) for i in range(n, 0, -1): while q[-1][0] > 2 * i + 1: q.pop() f = q[-1][1] + prices[i - 1] while f <= q[0][1]: q.popleft() q.appendleft((i, f)) return q[0][1]
单调队列优化dp
f[i] 表示以第i个位置为结尾,操作前i个数字所得到的最大非递减子数组长度
f[i] = f[j] + 1 // f[i] 铁定递增
last[i] 表示这个操作后,最后一个数字最小,有一个小小的贪心,在f[i]尽量大的情况下,last[i]尽量小
s[i] 表示 nums 的前缀和, s[i] - s[j] 表示从j + 1 到 i的元素和
要满足 s[i] - s[j] >= last[j] 才可以转移
转移条件
s[i] - s[j] >= last[j] -> s[i] >= s[j] + last[j]
f[i] = f[j] + 1
对于两个下标j < k & f[j] < f[k]
s[j] + last[j] < s[k] + last[k] <= s[i]
我们一定是要k这个点对应的数据, 都可以满足条件的情况下,取最大的
单调队列优化核心: 剔除无用数据
三部曲:
队首出队条件 (转移之前剔除)
s[j] + last[j] < s[k] + last[k] <= s[i]
队首的第二个下标s[idx] + last[idx] <= s[i] 这时候可以去掉队首
转移
f[i] = f[q[0]] + 1
last[i] = s[i] - s[q[0]]
队尾入队条件 (转移之后剔除)
s[j] + last[j] < s[k] + last[k] <= s[i]
右边的更大,就可以去掉队尾
class Solution: def findMaximumLength(self, nums: List[int]) -> int: n = len(nums) s = list(accumulate(nums, initial=0)) f = [0] * (n + 1) last = [0] * (n + 1) q = deque([0]) for i in range(1, n + 1): while len(q) > 1 and s[q[1]] + last[q[1]] <= s[i]: q.popleft() f[i] = f[q[0]] + 1 last[i] = s[i] - s[q[0]] while q and s[q[-1]] + last[q[-1]] >= s[i] + last[i]: q.pop() q.append(i) return f[n]
标签:last,int,res,网格,正方形,vector,prices,return,2943 From: https://www.cnblogs.com/zk6696/p/17859758.html