首页 > 其他分享 >ElasticSearch之cat anomaly detectors API

ElasticSearch之cat anomaly detectors API

时间:2023-11-23 21:23:26浏览次数:41  
标签:count data forecasts API ElasticSearch time model total anomaly

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果输出如下:

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
id state data.processed_records model.bytes model.memory_status forecasts.total buckets.count

查看帮助,命令如下:

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&help=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果输出如下:

id                               |                                    | the job_id
state                            | s                                  | the job state
opened_time                      | ot                                 | the amount of time the job has been opened
assignment_explanation           | ae                                 | why the job is or is not assigned to a node
data.processed_records           | dpr,dataProcessedRecords           | number of processed records
data.processed_fields            | dpf,dataProcessedFields            | number of processed fields
data.input_bytes                 | dib,dataInputBytes                 | total input bytes
data.input_records               | dir,dataInputRecords               | total record count
data.input_fields                | dif,dataInputFields                | total field count
data.invalid_dates               | did,dataInvalidDates               | number of records with invalid dates
data.missing_fields              | dmf,dataMissingFields              | number of records with missing fields
data.out_of_order_timestamps     | doot,dataOutOfOrderTimestamps      | number of records handled out of order
data.empty_buckets               | deb,dataEmptyBuckets               | number of empty buckets
data.sparse_buckets              | dsb,dataSparseBuckets              | number of sparse buckets
data.buckets                     | db,dataBuckets                     | total bucket count
data.earliest_record             | der,dataEarliestRecord             | earliest record time
data.latest_record               | dlr,dataLatestRecord               | latest record time
data.last                        | dl,dataLast                        | last time data was seen
data.last_empty_bucket           | dleb,dataLastEmptyBucket           | last time an empty bucket occurred
data.last_sparse_bucket          | dlsb,dataLastSparseBucket          | last time a sparse bucket occurred
model.bytes                      | mb,modelBytes                      | model size
model.memory_status              | mms,modelMemoryStatus              | current memory status
model.bytes_exceeded             | mbe,modelBytesExceeded             | how much the model has exceeded the limit
model.memory_limit               | mml,modelMemoryLimit               | model memory limit
model.by_fields                  | mbf,modelByFields                  | count of 'by' fields
model.over_fields                | mof,modelOverFields                | count of 'over' fields
model.partition_fields           | mpf,modelPartitionFields           | count of 'partition' fields
model.bucket_allocation_failures | mbaf,modelBucketAllocationFailures | number of bucket allocation failures
model.categorization_status      | mcs,modelCategorizationStatus      | current categorization status
model.categorized_doc_count      | mcdc,modelCategorizedDocCount      | count of categorized documents
model.total_category_count       | mtcc,modelTotalCategoryCount       | count of categories
model.frequent_category_count    | mfcc,modelFrequentCategoryCount    | count of frequent categories
model.rare_category_count        | mrcc,modelRareCategoryCount        | count of rare categories
model.dead_category_count        | mdcc,modelDeadCategoryCount        | count of dead categories
model.failed_category_count      | mfcc,modelFailedCategoryCount      | count of failed categories
model.log_time                   | mlt,modelLogTime                   | when the model stats were gathered
model.timestamp                  | mt,modelTimestamp                  | the time of the last record when the model stats were gathered
forecasts.total                  | ft,forecastsTotal                  | total number of forecasts
forecasts.memory.min             | fmmin,forecastsMemoryMin           | minimum memory used by forecasts
forecasts.memory.max             | fmmax,forecastsMemoryMax           | maximum memory used by forecasts
forecasts.memory.avg             | fmavg,forecastsMemoryAvg           | average memory used by forecasts
forecasts.memory.total           | fmt,forecastsMemoryTotal           | total memory used by all forecasts
forecasts.records.min            | frmin,forecastsRecordsMin          | minimum record count for forecasts
forecasts.records.max            | frmax,forecastsRecordsMax          | maximum record count for forecasts
forecasts.records.avg            | fravg,forecastsRecordsAvg          | average record count for forecasts
forecasts.records.total          | frt,forecastsRecordsTotal          | total record count for all forecasts
forecasts.time.min               | ftmin,forecastsTimeMin             | minimum runtime for forecasts
forecasts.time.max               | ftmax,forecastsTimeMax             | maximum run time for forecasts
forecasts.time.avg               | ftavg,forecastsTimeAvg             | average runtime for all forecasts (milliseconds)
forecasts.time.total             | ftt,forecastsTimeTotal             | total runtime for all forecasts
node.id                          | ni,nodeId                          | id of the assigned node
node.name                        | nn,nodeName                        | name of the assigned node
node.ephemeral_id                | ne,nodeEphemeralId                 | ephemeral id of the assigned node
node.address                     | na,nodeAddress                     | network address of the assigned node
buckets.count                    | bc,bucketsCount                    | bucket count
buckets.time.total               | btt,bucketsTimeTotal               | total bucket processing time
buckets.time.min                 | btmin,bucketsTimeMin               | minimum bucket processing time
buckets.time.max                 | btmax,bucketsTimeMax               | maximum bucket processing time
buckets.time.exp_avg             | btea,bucketsTimeExpAvg             | exponential average bucket processing time (milliseconds)
buckets.time.exp_avg_hour        | bteah,bucketsTimeExpAvgHour        | exponential average bucket processing time by hour (milliseconds)

相关资料

标签:count,data,forecasts,API,ElasticSearch,time,model,total,anomaly
From: https://www.cnblogs.com/jackieathome/p/17852530.html

相关文章

  • ElasticSearch
    环境准备1.安装ElasticSearch#创建网络dockernetworkcreatees-netdockernetworkls#拉取镜像dockerpullelasticsearch:7.12.1#创建容器dockerrun-d\--namees\-e"ES_JAVA_OPTS=-Xms512m-Xmx512m"\-e"discovery.type=single-node"\-ves-d......
  • 全屏API及vue3 hook封装
    最近在一个大屏项目遇到一个需求:用户可以通过一个按钮,触发页面部分模块全屏。通过以下API可以实现:Element.requestFullscreen()方法用于发出异步请求使元素进入全屏模式。且全屏状态变化会触发以下事件:fullscreenchange事件会在浏览器进入或退出全屏模式后立即触发。基于......
  • CreateIndex API执行流程_milvus源码解析
    CreateIndexAPI执行流程源码解析milvus版本:v2.3.2整体架构:CreateIndex的数据流向:1.客户端sdk发出CreateIndexAPI请求。importnumpyasnpfrompymilvusimport(connections,FieldSchema,CollectionSchema,DataType,Collection,)num_entities,......
  • CreateIndex API执行流程_milvus源码解析
    CreateIndexAPI执行流程源码解析milvus版本:v2.3.2整体架构:CreateIndex的数据流向:1.客户端sdk发出CreateIndexAPI请求。importnumpyasnpfrompymilvusimport(connections,FieldSchema,CollectionSchema,DataType,Collection,)num_entities,......
  • ES插入报错 索引只读:blocked by: [FORBIDDEN/12/index read-only / allow delete (ap
     ES插入报错:reason:ElasticsearchException[Elasticsearchexception[type=cluster_block_exception,reason=blockedby:[FORBIDDEN/12/indexread-only/allowdelete(api)];]]   这种大多都是因为磁盘空间不足了超过设置的阈值,一般80%所以索引变成只读了,要把空......
  • OpenHarmony之NAPI框架介绍
     张志成诚迈科技高级技术专家 NAPI是什么NAPI的概念源自Nodejs,为了实现javascript脚本与C++库之间的相互调用,Nodejs对V8引擎的api做了一层封装,称为NAPI。可以在Nodejs官网(https://nodejs.org/dist/latest-v20.x/docs/api/n-api.html)上查看各种NAPI接口定义说明。可以......
  • Docker中使用elasticsearch
    Docker中使用elasticsearch1、docker拉取elasticsearch:7.17镜像这里我们拉取7.17.10版本:dockerpullelasticsearch:7.17.102、创建自己的配置文件并写入基础数据供后续挂载后直接启动使用【非必选,在不指定挂载配置文件启动的情况下可不设置】创建文件夹后,新建一个自己的e......
  • ElasticSearch的安装和使用
    ElasticSearch的安装和使用elasticsearch安装步骤1、下载elasticsearch-7.2.0并解压缩将elasticsearch解压缩到/usr/localtar-zxvfelasticsearch.tar.gz-C/usr/local/2、创建es的用户和用户组由于es不能通过root用户来启动,所以需要创建一个非root的es用户和用户组grou......
  • 使用Python调用API接口获取小红书笔记详情数据
    本文将详细介绍如何使用Python编程语言调用小红书API接口,以获取小红书笔记的详情数据。我们将从以下几个方面展开讨论:1)API接口简介;2)Python环境准备;3)API密钥获取;4)使用Requests库发送API请求;5)解析响应数据;6)异常处理与错误排查。一、API接口简介API(应用程序编程接口)是一种......
  • MFC-ODBC API动态连接配置数据库
    一、ODBC管理器介绍在Window中,ODBC数据远管理器有6个标签:用户DSN、系统DSN、文件DSN、驱动程序、跟踪、连接池,通常情况下,使用用户DSN或者系统DSN,这里主要了解用户DSN和系统DSN即可。用户DSN:ODBC用户数据源存储了如何与指定的数据库提供者连接的信息,只有当前用户可见。系统DSN:O......