每一个 OS 线程都有一个固定大小的内存块(一般会是 2MB)来做栈,这个栈会用来存储当前正在被调用或挂起(指在调用其它函数时)的函数的内部变量。这个固定大小的栈同时很大又很小。因为 2MB 的栈对于一个小小的 goroutine 来说是很大的内存浪费,而对于一些复杂的任务(如深度嵌套的递归)来说又显得太小。因此,Go 语言做了它自己的线程。
在 Go 语言中,每一个 goroutine 是一个独立的执行单元,相较于每个 OS 线程固定分配 2M 内存的模式,goroutine 的栈采取了动态扩容方式, 初始时仅为 2KB,随着任务执行按需增长,最大可达 1GB(64 位机器最大是 1G,32 位机器最大是 256M),且完全由 golang 自己的调度器 Go Scheduler 来调度。
此外,GC 还会周期性地将不再使用的内存回收,收缩栈空间。 因此,Go 程序可以同时并发成千上万个 goroutine 是得益于它强劲的调度器和高效的内存模型。Go 的创造者大概对 goroutine 的定位就是屠龙刀,因为他们不仅让 goroutine 作为 golang 并发编程的最核心组件(开发者的程序都是基于 goroutine 运行的)而且 golang 中的许多标准库的实现也到处能见到 goroutine 的身影,比如 net/http 这个包,甚至语言本身的组件 runtime 运行时和 GC 垃圾回收器都是运行在 goroutine 上的,作者对 goroutine 的厚望可见一斑。
任何用户线程最终肯定都是要交由 OS 线程来执行的,goroutine(称为 G)也不例外,但是 G 并不直接绑定 OS 线程运行,而是由 Goroutine Scheduler 中的 P - Logical Processor (逻辑处理器)来作为两者的传递者,P 可以看作是一个抽象的资源或者一个上下文,一个 P 绑定一个 OS 线程.
在 golang 的实现里把 OS 线程抽象成一个数据结构:M,G 实际上是由 M 通过 P 来进行调度运行的,但是在 G 的层面来看,P 提供了 G 运行所需的一切资源和环境,因此在 G 看来 P 就是运行它的 “CPU”,由 G、P、M 这三种由 Go 抽象出来的实现,最终形成了 Go 调度器的基本结构:
G: 表示 Goroutine,每个 Goroutine 对应一个 G 结构体,G 存储 Goroutine 的运行堆栈、状态以及任务函数,可重用。G 并非执行体,每个 G 需要绑定到 P 才能被调度执行。
P: Processor,表示逻辑处理器, 对 G 来说,P 相当于 CPU 核,G 只有绑定到 P(在 P 的 local runq 中)才能被调度。对 M 来说,P 提供了相关的执行环境(Context),如内存分配状态(mcache),任务队列(G)等,P 的数量决定了系统内最大可并行的 G 的数量(前提:物理 CPU 核数 >= P 的数量),P 的数量由用户设置的 GOMAXPROCS 决定,但是不论 GOMAXPROCS 设置为多大,P 的数量最大为 256。
M: Machine,OS 线程抽象,负责调度任务, 代表着真正执行计算的资源,在绑定有效的 P 后,进入 schedule 循环;而 schedule 循环的机制大致是从 Global 队列、P 的 Local 队列以及 wait 队列中获取 G,切换到 G 的执行栈上并执行 G 的函数,调用 goexit 做清理工作并回到 M,如此反复。M 并不保留 G 状态,这是 G 可以跨 M 调度的基础,M 的数量是不定的,由 Go Runtime 调整,为了防止创建过多 OS 线程导致系统调度不过来,目前默认最大限制为 10000 个。
标签:模型,goroutine,调度,线程,内存,Go,GMP,OS
From: https://www.cnblogs.com/qcy-blog/p/17828737.html