首页 > 其他分享 >非极大值抑制NMS

非极大值抑制NMS

时间:2023-11-12 15:45:44浏览次数:35  
标签:NMS 抑制 iou boxes boxes2 boxes1 极大值 np Tensor

非极大值抑制NMS

目录

为什么需要NMS

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。在目标检测领域其目的就是要去除冗余的检测框,保留最好的一个。

以目标检测为例,目标检测推理过程中会产生很多检测框 ,其中很多检测框都是检测同一个目标,但最终每个目标只需要一个检测框,NMS选择那个得分最高的检测框 ,再将该候选框与剩余框计算相应的IOU值,当IOU值超过所设定的阈值,即对超过阈值的框进行抑制,抑制的做法是将检测框的得分设置为0,如此一轮过后,在剩下检测框中继续寻找得分最高的,再抑制与之IOU超过阈值的框,直到最后会保留几乎没有重叠的框。这样基本可以做到每个目标只剩下一个检测框。

如何计算NMS

前提: 目标边界框列表及其对应的置信度得分列表,设定阈值,阈值用来删除重叠较大的边界框。

IoU:intersection-over-union,即两个边界框的交集部分除以它们的并集。

非极大值抑制的流程如下:

1. 获取全部bbox信息,根据置信度得分进行排序

2. 按照置信度排序后,记录当前confidence最大的bbox

3. 计算最大confidence对应的bbox 和 剩下的其他的bbox的 IOU

4. 删除IOU 大于阈值的 边界框(bbox)    即 删除重合度较高的边界框

5. 对剩下的候选框 bbox 重复上 排序和计算IOU,删除操作[2][3][4], 直到不能删除为止 

区域交并比(IOU)

IOU的原称为Intersection over Union,也就是两个box区域的交集比上并集,很好理解,用于确定两个框的位置像素距离。

常用于计算真实边界框Bgt(数据集的标注)以及预测边界框Bp(模型预测结果)的重叠程度。

img

思路

  • 首先计算两个box左上角点坐标的最大值和右下角坐标的最小值
  • 然后计算交集面积
  • 最后把交集面积除以对应的并集面积

numpy实现

import numpy as np

def iou(boxes1, boxes2):
    """
    Arguments:
        boxes1 (Array[N, 4])
        boxes2 (Array[M, 4])
    """
    # 计算第一组矩形框的面积
    area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])

    # 计算第二组矩形框的面积
    area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])

    # 计算交集的坐标范围
    x1 = np.maximum(boxes1[:, 0][:, np.newaxis], boxes2[:, 0])
    y1 = np.maximum(boxes1[:, 1][:, np.newaxis], boxes2[:, 1])
    x2 = np.minimum(boxes1[:, 2][:, np.newaxis], boxes2[:, 2])
    y2 = np.minimum(boxes1[:, 3][:, np.newaxis], boxes2[:, 3])

    # 计算交集的面积
    inter_area = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0)

    # 计算并集的面积
    union_area = area1[:, np.newaxis] + area2 - inter_area

    # 计算IOU值
    iou = inter_area / union_area
    return iou


boxes1 = np.array([[10, 10, 50, 50],
                   [20, 20, 60, 60],
                   [30, 30, 70, 70]])
boxes2 = np.array([[20, 20, 60, 60],
                   [30, 30, 70, 70],
                   [40, 40, 80, 80]])

iou_matrix = iou(boxes1, boxes2)
print(iou_matrix)

[[0.39130435 0.14285714 0.03225806]
 [1.         0.39130435 0.14285714]
 [0.39130435 1.         0.39130435]]

pytorch实现

from torch import Tensor
import torch

def box_area(boxes: Tensor) -> Tensor:
    """
    Computes the area of a set of bounding boxes, which are specified by its
    (x1, y1, x2, y2) coordinates.
    Arguments:
        boxes (Tensor[N, 4]): boxes for which the area will be computed. They
            are expected to be in (x1, y1, x2, y2) format
    Returns:
        area (Tensor[N]): area for each box
    """
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])

def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        boxes1 (Tensor[N, 4])
        boxes2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
    """
    area1 = box_area(boxes1)  # 每个框的面积 (N,)
    area2 = box_area(boxes2)  # (M,)
 
    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2] # N中一个和M个比较; 所以由N,M 个
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]
 
    wh = (rb - lt).clamp(min=0)  # [N,M,2]  #小于0的为0  clamp 钳;夹钳;
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]  
 
    iou = inter / (area1[:, None] + area2 - inter)
    return iou  # NxM, boxes1中每个框和boxes2中每个框的IoU值;


boxes1 = np.array([[10, 10, 50, 50],
                   [20, 20, 60, 60],
                   [30, 30, 70, 70]])

boxes2 = np.array([[20, 20, 60, 60],
                   [30, 30, 70, 70],
                   [40, 40, 80, 80]])

box1=torch.Tensor(boxes1)
box2=torch.Tensor(boxes2)
iou_matrix = box_iou(box1, box2)
print(iou_matrix)
tensor([[0.3913, 0.1429, 0.0323],
        [1.0000, 0.3913, 0.1429],
        [0.3913, 1.0000, 0.3913]])

pytorch实现

def box_iou_torch(box1, box2, eps=1e-7):
    """
    Calculate intersection-over-union (IoU) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py

    Args:
        box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
        box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)

boxes1 = np.array([[10, 10, 50, 50],
                   [20, 20, 60, 60],
                   [30, 30, 70, 70]])

boxes2 = np.array([[20, 20, 60, 60],
                   [30, 30, 70, 70],
                   [40, 40, 80, 80]])

box1=torch.Tensor(boxes1)
box2=torch.Tensor(boxes2)
res=box_iou_torch(box1,box2)

tensor([[0.3913, 0.1429, 0.0323],
        [1.0000, 0.3913, 0.1429],
        [0.3913, 1.0000, 0.3913]])

非极大值抑制NMS

numpy实现

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')

def py_cpu_nms(dets, thresh):
    # dets:(m,5)  thresh:scaler
    x1 = dets[:,0]
    y1 = dets[:,1]
    x2 = dets[:,2]
    y2 = dets[:,3]
    bboxs  = dets[:,:4]
    scores = dets[:,4]
    
    areas = (y2-y1) * (x2-x1)           # 计算每个box面积
      
    index = scores.argsort()[::-1]          # scores 排序
    keep_bboxs = []
    keep_scors = []
    while index.size > 0:
        i = index[0]                              # 已scores最大为基准
        keep_bboxs.append(bboxs[i])                            # 要返回的结果
        keep_scors.append(dets[i])
        
        x11 = np.maximum(x1[i], x1[index[1:]])    
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        
        w = np.maximum(0, x22-x11)    # the weights of overlap
        h = np.maximum(0, y22-y11)    # the height of overlap
       
        overlaps = w*h                            #  依次,计算交集 
        
        ious = overlaps / (areas[i]+areas[index[1:]] - overlaps)  # 计算交并比 
        
        idx = np.where(ious<=thresh)[0]       # 删除IOU大于阈值的,返回过滤剩下bbox
        # 过滤iou大于阈值,    
        # 因为没有计算与自身的IOU,所以索引相差1
        index = index[idx+1]                
        
    return keep_bboxs,keep_scors


def plot_bbox(dets, color='k',title=None):

    fig=plt.figure()
    axs=fig.add_subplot(111)
    x1 = dets[:,0]
    y1 = dets[:,1]
    x2 = dets[:,2]
    y2 = dets[:,3]
    # print(x1.shape)   # (6,)
    # 通过绘制直线的方式,绘制矩形
    axs.plot([x1,x2], [y1,y1], color)
    axs.plot([x1,x1], [y1,y2], color)
    axs.plot([x1,x2], [y2,y2], color)
    axs.plot([x2,x2], [y1,y2], color)
    if title:
        plt.title(title)
    plt.show()

boxes=np.array([[100,100,210,210,0.72],
                [250,250,420,420,0.8],
                [220,220,320,330,0.92],
                [100,100,210,210,0.72],
                [230,240,325,330,0.81],
                [220,230,315,340,0.9]]) 


plot_bbox(boxes,'k')   # before nms

keep_bboxs,keep_scors = py_cpu_nms(boxes, thresh=0.6)

plot_bbox(np.array(keep_bboxs), 'r')    # after nms
img image-20231112152648593

pytorch实现

def nms(boxes: Tensor, scores: Tensor, iou_threshold: float):
    """
    :param boxes: [N, 4], 此处传进来的框,是经过筛选(NMS之前选取过得分TopK)之后, 在传入之前处理好的;
    :param scores: [N]
    :param iou_threshold: 0.7
    :return:
    """
    keep = []  # 最终保留的结果, 在boxes中对应的索引;
    idxs = scores.argsort()  # 值从小到大的 索引
    while idxs.numel() > 0:  # 循环直到null; numel(): 数组元素个数
        # 得分最大框对应的索引, 以及对应的坐标
        max_score_index = idxs[-1]
        max_score_box = boxes[max_score_index][None, :]  # [1, 4]
        keep.append(max_score_index)
        if idxs.size(0) == 1:  # 就剩余一个框了;
            break
        idxs = idxs[:-1]  # 将得分最大框 从索引中删除; 剩余索引对应的框 和 得分最大框 计算IoU;
        other_boxes = boxes[idxs]  # [?, 4]
        ious = box_iou(max_score_box, other_boxes)  # 一个框和其余框比较 1XM
        idxs = idxs[ious[0] <= iou_threshold]
 
    keep = idxs.new(keep)  # Tensor
    return keep
 

参考资料

https://zhuanlan.zhihu.com/p/54709759

https://blog.csdn.net/weixin_44979150/article/details/122974977

https://blog.csdn.net/weixin_41311686/article/details/128008640 代码和图解

标签:NMS,抑制,iou,boxes,boxes2,boxes1,极大值,np,Tensor
From: https://www.cnblogs.com/tian777/p/17827265.html

相关文章

  • 音视频基础知识|ANS 噪声抑制原理解析
    在上一期课程《音视频开发进阶课程|第二讲:回声消除》中,我们接触了音频前处理的概念,还认识了音频前处理的三剑客之一AEC回声消除。今天,我们继续来认识三剑客中的第二位:噪声抑制 ANS (AmbientNoiseSuppression)。经常被卷入在线会议的你,想必也曾抱怨过:“太嘈杂了,什么都听不清”......
  • 音视频基础知识|ANS 噪声抑制原理解析
    ​在上一期课程《音视频开发进阶课程|第二讲:回声消除》中,我们接触了音频前处理的概念,还认识了音频前处理的三剑客之一AEC回声消除。今天,我们继续来认识三剑客中的第二位:噪声抑制 ANS (AmbientNoiseSuppression)。经常被卷入在线会议的你,想必也曾抱怨过:“太嘈杂了,什么都听......
  • 如何抑制特定 clang-tidy 警告
    ⚠️clang-tidy的规则能够帮助检查潜在的问题,不要盲目抑制警告!可以通过添加NOLINT,NOLINTNEXTLINE,以及NOLINTBEGIN…NOLINTEND注释来抑制某些(或所有)clang-tidy警告。NOLINT抑制同一行的警告NOLINTNEXTLINE抑制下一行的警告NOLINTBEGIN…NOLINTEND抑制多行警......
  • 非极大值抑制
    非极大值抑制(Non-MaximumSuppression,NMS)是一种在目标检测算法中常用的技术,用于去除冗余的边界框,以获取最佳的检测结果。在目标检测中,通常会使用候选框(boundingboxes)来表示可能包含目标的区域。然而,在某些情况下,不同的候选框可能会有部分重叠,或者多个候选框可能都表示同一个实际目......
  • 常用代码段-nms操作
    非极大值抑制(Non-MaximumSuppression,NMS)是一种常用于目标检测和计算机视觉任务的技术,用于从重叠的检测框中选择最佳的候选框。以下是使用PyTorch实现标准的NMS算法的示例代码:importtorchdefnms(boxes,scores,iou_threshold):sorted_indices=scores.argsort(des......
  • (十五)MIT公开课雷达系统工程之杂波抑制(多普勒处理)
    0写在前面岁月静好是片刻,一地鸡毛是日常,即使世界偶尔薄凉,内心也要繁华似锦,浅浅喜,静静爱,深深懂得,淡淡释怀,望远处的是风景,看近处的才是人生,唯愿此生,岁月无恙;只言温暖,不语悲伤。——杨绛1基本介绍问题:不仅仅是地杂波。一个陷波为零的多普勒滤波器不能充分抑制雨杂波。MTI对消器的问......
  • paddleocr Linux安装lanms-neo报错
     检查一般来说是g++环境问题添加源根据不同的的系统查找编辑/etc/apt/sources.list debhttp://archive.ubuntu.com/ubuntubionicmainuniverse 更新gcc和g++sudoapt-getupdatesudoapt-getinstallgcc-6sudoaptinstallg++-6sudoupdate-alternatives--......
  • SD/TF卡ESD静电放电防护选用TVS瞬态抑制二极管,如何选型号?
    SD/TF卡是一种基于半导体快闪记忆器的新一代记忆设备,具有体积小、数据传输速度快、可热插拔等特性,广泛应用于便携式装置中,如数码相机、手机、平板电脑、多媒体播放器、汽车电子、无人机等产品中。然而,由于SD/TF卡需要经常性热插拔、集成度非常高,比较脆弱,很容易受到ESD静电放电的威......
  • 伺服系统基于陷波滤波器双惯量伺服系统机械谐振抑制matlab Simulink仿真
    伺服系统基于陷波滤波器双惯量伺服系统机械谐振抑制matlabSimulink仿真1.模型简介 模型为基于陷波滤波器的双惯量伺服系统机械谐振抑制仿真,采用MatlabR2018aSimulink搭建。仿真模型由传递函数形式搭建,主要包括转速环、电流环、低通滤波器、陷波滤波器、双惯量谐振模型。原......
  • 基于多算法融合的啸叫抑制方案总结
    前记 在对讲和本地扩音领域,啸叫抑制是一个无法绕过去的话题。怎么抑制啸叫是一个非常棘手的问题。笔者及团队在这个方向研究了好久。终于取得了一些阶段性的进展。这里做一下梳理。 心路历程 刚开始想依靠单纯的算法去解决。做了很多仿真,发现都不是很理想。不是抑制太狠了......