训练深层神经网络是十分困难的,特别是在较短的时间内使他们收敛更加棘手。 本节将介绍批量规范化(batch normalization) (Ioffe and Szegedy, 2015),这是一种流行且有效的技术,可持续加速深层网络的收敛速度。 再结合在 7.6节中将介绍的残差块,批量规范化使得研究人员能够训练100层以上的网络。
批量规范化计算公式:
批量规范化提出的意义:
1. 数据预处理和标准化对结果有很大影响,可以让模型更容易训练。批量规范化在一定程度上也是进行标准化。
2. 中间层的变量分布随着层数和时间都会发生变化,这可能会对训练造成困难。批量规范化可以减小这种变化。
3. 更深层的网络更容易过拟合,批量规范化作为一种正则化方法可以缓解过拟合。
4. 批量规范化需要一个适当大小的批量,否则无法工作。选择批量大小时需要更加慎重。
5. 批量规范化通过减去均值并除以标准差来规范化,这使用了批量内的统计信息,因此名称中有“批量”。
总结起来,批量规范化通过标准化内部变量的分布来帮助网络训练,使得超参数设置更加容易,并具有正则化的效果。
批量规范化层
下面,我们从头开始实现一个具有张量的批量规范化层。
import torch from torch import nn from d2l import torch as d2l def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum): # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式 if not torch.is_grad_enabled(): # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差 X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps) else: assert len(X.shape) in (2, 4) if len(X.shape) == 2: # 使用全连接层的情况,计算特征维上的均值和方差 mean = X.mean(dim=0) var = ((X - mean) ** 2).mean(dim=0) else: # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。 # 这里我们需要保持X的形状以便后面可以做广播运算 mean = X.mean(dim=(0, 2, 3), keepdim=True) var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True) # 训练模式下,用当前的均值和方差做标准化 X_hat = (X - mean) / torch.sqrt(var + eps) # 更新移动平均的均值和方差 moving_mean = momentum * moving_mean + (1.0 - momentum) * mean moving_var = momentum * moving_var + (1.0 - momentum) * var Y = gamma * X_hat + beta # 缩放和移位 return Y, moving_mean.data, moving_var.data
class BatchNorm(nn.Module): # num_features:完全连接层的输出数量或卷积层的输出通道数。 # num_dims:2表示完全连接层,4表示卷积层 def __init__(self, num_features, num_dims): super().__init__() if num_dims == 2: shape = (1, num_features) else: shape = (1, num_features, 1, 1) # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0 self.gamma = nn.Parameter(torch.ones(shape)) self.beta = nn.Parameter(torch.zeros(shape)) # 非模型参数的变量初始化为0和1 self.moving_mean = torch.zeros(shape) self.moving_var = torch.ones(shape) def forward(self, X): # 如果X不在内存上,将moving_mean和moving_var # 复制到X所在显存上 if self.moving_mean.device != X.device: self.moving_mean = self.moving_mean.to(X.device) self.moving_var = self.moving_var.to(X.device) # 保存更新过的moving_mean和moving_var Y, self.moving_mean, self.moving_var = batch_norm( X, self.gamma, self.beta, self.moving_mean, self.moving_var, eps=1e-5, momentum=0.9) return Y
使用批量规范化层的 LeNet
net = nn.Sequential( nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(), nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(), nn.Linear(84, 10))
总结
-
在模型训练过程中,批量规范化利用小批量的均值和标准差,不断调整神经网络的中间输出,使整个神经网络各层的中间输出值更加稳定。
-
批量规范化在全连接层和卷积层的使用略有不同。
-
批量规范化层和暂退层一样,在训练模式和预测模式下计算不同。
-
批量规范化有许多有益的副作用,主要是正则化。另一方面,”减少内部协变量偏移“的原始动机似乎不是一个有效的解释。
标签:机器,批量,nn,self,var,moving,规范化,mean From: https://www.cnblogs.com/yccy/p/17819429.html