首页 > 其他分享 >R语言EG(Engle-Granger)两步法协整检验、RESET、格兰杰因果检验、VAR模型分析消费者价格指数CPI和生产者价格指数PPI时间序列|附代码数据

R语言EG(Engle-Granger)两步法协整检验、RESET、格兰杰因果检验、VAR模型分析消费者价格指数CPI和生产者价格指数PPI时间序列|附代码数据

时间:2023-11-08 23:46:43浏览次数:49  
标签:CPI ## PPI 检验 价格指数 value 序列 data 格兰杰

全文链接:http://tecdat.cn/?p=31108

原文出处:拓端数据部落公众号

作为衡量通货膨胀的基本指标,消费者价格指数CPI和生产者价格指数PPI的作用关系与传导机制一直是宏观经济研究的核心问题。

对此问题的研究显然具有重要的学术价值与现实意义:当PPI先行地引导着CPI的变动,则意味着上游价格对下游价格具有正向传导效应,物价可能因供给因素的冲击而上升,并由此引发“成本推动型通胀”的风险,此时,通胀治理应以“供给调控”为主;反之,当CPI引导着PPI的变动,则意味着存在下游价格对上游价格的反向倒逼机制,物价可能因需求因素的冲击而上升,并由此引发“需求拉动型通胀”的风险,此时的通胀治理则应以“需求调控”为主。

我们围绕因果关系检验技术进行一些咨询,帮助客户解决独特的业务问题。

数据:CPI与PPI 月度同比数据

image.png

读取数据

   
head(data)

##   当月同比  CPI  PPI  
## 1    36556 -0.2 0.03  
## 2    36585  0.7 1.20  
## 3    36616 -0.2 1.87  
## 4    36646 -0.3 2.59  
## 5    36677  0.1 0.67  
## 6    36707  0.5 2.95

CPI数据

image.png

   
##  
## Residuals:  
##     Min      1Q  Median      3Q     Max  
## -4.3232 -1.2663 -0.5472  0.9925  6.3941  
##  
## Coefficients:  
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  1.05348    0.30673   3.435 0.000731 ***  
## t            0.01278    0.00280   4.564 9.05e-06 ***  
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Residual standard error: 2.1 on 187 degrees of freedom  
## Multiple R-squared:  0.1002, Adjusted R-squared:  0.09543  
## F-statistic: 20.83 on 1 and 187 DF,  p-value: 9.055e-06

1、  单位根检验

查看数据后发现需要进行季节调整

给出输出结果:

image.png

   
##  Augmented Dickey-Fuller Test  
##  
## data:  x  
## Dickey-Fuller = -2.0274, Lag order = 0, p-value = 0.4353  
## alternative hypothesis: explosive
   
## ###############################################  
## # Augmented Dickey-Fuller Test Unit Root Test #  
## ###############################################  
##  
## Test regression trend  
##  
##  
## Call:  
## lm(formula = z.diff ~ z.lag.1 + 1 + tt)  
##  
## Residuals:  
##      Min       1Q   Median       3Q      Max  
## -2.66698 -0.36462  0.02973  0.39311  1.97552  
##  
## Coefficients:  
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.063e-01  9.513e-02   1.117   0.2653   
## z.lag.1     -4.463e-02  2.201e-02  -2.027   0.0441 *  
## tt           4.876e-05  8.954e-04   0.054   0.9566   
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Residual standard error: 0.6307 on 185 degrees of freedom  
## Multiple R-squared:  0.0238, Adjusted R-squared:  0.01324  
## F-statistic: 2.255 on 2 and 185 DF,  p-value: 0.1077  
##  
##  
## Value of test-statistic is: -2.0274 1.5177 2.255  
##  
## Critical values for test statistics:  
##       1pct  5pct 10pct  
## tau3 -3.99 -3.43 -3.13  
## phi2  6.22  4.75  4.07  
## phi3  8.43  6.49  5.47

PPI数据

image.png

1.png

   
##  Augmented Dickey-Fuller Test  
##  
## data:  x  
## Dickey-Fuller = -1.3853, Lag order = 0, p-value = 0.1667  
## alternative hypothesis: explosive

(1)若存在单位根,用差分后序列进行2、3、4 步;

(2)若不存在单位根,就用原序列。

因此,对两个数据都进行差分。

   
data$CPI=c(0,diff(data$CPI))

 

2、  检验协整关系——EG两步法

给出输出结果

(1)若存在长期协整,用VECM法线性过滤,利用利用过滤后的“残差成分”再进行3,4 步;

(2)若不存在长期协整,就不用过滤,直接进行3、4步。

建立长期均衡模型

   
## Call:  
## lm(formula = PPI ~ CPI, data = data)  
##  
## Residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.6930 -0.5071 -0.0322  0.4637  3.2085  
##  
## Coefficients:  
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.03678    0.06428  -0.572    0.568     
## CPI          0.54389    0.10176   5.345 2.61e-07 ***  
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Residual standard error: 0.8836 on 187 degrees of freedom  
## Multiple R-squared:  0.1325, Adjusted R-squared:  0.1279  
## F-statistic: 28.57 on 1 and 187 DF,  p-value: 2.615e-07

绘制残差

   
ts.plot( residual

image.png

不存在长期协整,就不用过滤,直接进行3、4步

3、  非线性检验——RESET检验方法

给出输出结果

   
##  RESET test  
##  
## data:  data$PPI ~ data$CPI  
## RESET = 0.28396, df1 = 1, df2 = 186, p-value = 0.5948

 

4、  建立VAR模型、格兰杰因果检验

建立VAR模型给出输出结果

   
## $Granger  
##  
##  Granger causality H0: CPI do not Granger-cause PPI  
##  
## data:  VAR object var.2c  
## F-Test = 5.1234, df1 = 2, df2 = 364, p-value = 0.006392  
##  
##  
## $Instant  
##  
##  H0: No instantaneous causality between: CPI and PPI  
##  
## data:  VAR object var.2c  
## Chi-squared = 15.015, df = 1, p-value = 0.0001067

p值小于给定的显著性水平拒绝,一般p值小于0.05,特殊情况下可以放宽到0.1。 f统计量大于分位点即可。 一般看p值,F还要查表 本人认为,格兰杰检验主要看P值即可。 例如,若P值小于0.1,则拒绝原假设,变量间存在格兰杰因果关系。


QQ截图20221106154231.png

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.Python用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID-19新冠疫情新增人数时间序列

4.Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性

5.r语言copulas和金融时间序列案例

6.R 语言用RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

7.Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.R语言结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析

标签:CPI,##,PPI,检验,价格指数,value,序列,data,格兰杰
From: https://www.cnblogs.com/tecdat/p/17818635.html

相关文章

  • t检验(t-test)临界值表(临界置信水平)
    t检验(t-test)临界值表(临界置信水平) 下载 n’P(2):0.50.20.10.050.020.010.0050.0020.001P(1):0.250.10.050.0250.010.0050.00250.0010.0005113.0786.31412.70631.82163.657127.321318.309636.61920.8161.8862.924.3036.9659.92514.08922.32731.59930.7651.6382.3533.1824.5415.84......
  • SPSS进行2×2卡方检验
    对于以上数据,我们想知道性别男女之间对于regressiontonormoglycemia有无差异,这个时候需要用到卡方检验我们在SPSS中选择分析,然后选择描述分析,最后选择交叉表 接着我们在行中添加性别变量rgender,列中添加变量Regressiontonormoglycemia,如下图所示,并在右边统计选项中选中......
  • LIMS系统源码:从样品登记到检验全面管理实验室流程
    LIMS可用于管理完整的实验程序,从样品登记到检验、校核、审核到最终批准报告,建立在过程质量控制的基础上,对检测流程进行有效全面的管理,对影响质量的人、机、料、法、环因素加以控制,同时为质量改进提供数据依据。LIMS实验室信息管理系统,功能包括以下几个模块:委托管理:样品登记、样品接......
  • 检验ip是否合法
    importjava.util.*;publicclassSolution{/***代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可**验证IP地址*@paramIPstring字符串一个IP地址字符串*@returnstring字符串*/publicStringso......
  • R语言上市公司经营绩效实证研究 ——因子分析、聚类分析、正态性检验、信度检验|附代
    全文链接:http://tecdat.cn/?p=32747原文出处:拓端数据部落公众号随着我国经济的快速发展,上市公司的经营绩效成为了一个备受关注的话题。本文旨在探讨上市公司经营绩效的相关因素,并运用数据处理、图示、检验和分析等方法进行深入研究,帮助客户对我国45家上市公司的16项财务指标进行......
  • golang validator 检验工具的使用指北
    golangvalidator包的使用指北原创阿兵云原生阿兵云原生2023-09-1009:27发表于广东看到validator咱们第一反应会想起啥?见名知意我就可以知道他是一个验证器,如果用过ginweb框架的同学,自然是用过gin里面的validator,只不过gin中使用的关键字是binding去做标识 ......
  • Python自激励阈值自回归(SETAR)、ARMA、BDS检验、预测分析太阳黑子时间序列数据
    全文链接:https://tecdat.cn/?p=33896原文出处:拓端数据部落公众号这篇文章展示了自激励阈值自回归SETAR的使用,用于分析经常被客户研究的太阳黑子数据集。具体而言,研究SETAR模型的估计和预测。我们在这里考虑原始的太阳黑子序列以匹配ARMA示例,尽管文献中许多来源在建模之前对序......
  • 戴森美发科技,呵护头皮水分0流失 戴森Supersonic™吹风机的头皮功效试验结果经中轻日用
    作为头发护理行业的领军品牌,戴森多年来一直持续研究头发科学,不断探知消费者对头发损伤的困扰与认知,致力于以创新科技为消费者提供健康科学的护发造型体验。自2016年戴森Supersonic™吹风机面世以来,戴森即以创新科技颠覆了传统的护发造型方式,也使健康护发的造型理念逐渐深入人心。日......
  • C# Model 自定义检验
    使Model实现IValidatableObject接口并重写Validate方法即可publicclassAuditIPKeepRecordApply_In:IValidatableObject{///<summary>///IP备案申请表主键id///</summary>[Required(ErrorMessage="IP备案申请表主键id不可为空"......
  • 两种方法获取电话区号,检验我们对Excel基础知识储备的反应能力!
    1职场实例小伙伴们大家好,今天我们专门拿出一个篇幅讲解一下如何在Excel中提取座机电话的区号。如下图所示:是一张各个单位的联系信息,其中的B列为座机电话号码,座机电话号码有一个特点:就是有一个间隔符“-”将一串数字分成了左右两段,左段数字为区号,右段数字为号码。现在我们需要在C列......