全文链接:http://tecdat.cn/?p=31108
原文出处:拓端数据部落公众号
作为衡量通货膨胀的基本指标,消费者价格指数CPI和生产者价格指数PPI的作用关系与传导机制一直是宏观经济研究的核心问题。
对此问题的研究显然具有重要的学术价值与现实意义:当PPI先行地引导着CPI的变动,则意味着上游价格对下游价格具有正向传导效应,物价可能因供给因素的冲击而上升,并由此引发“成本推动型通胀”的风险,此时,通胀治理应以“供给调控”为主;反之,当CPI引导着PPI的变动,则意味着存在下游价格对上游价格的反向倒逼机制,物价可能因需求因素的冲击而上升,并由此引发“需求拉动型通胀”的风险,此时的通胀治理则应以“需求调控”为主。
我们围绕因果关系检验技术进行一些咨询,帮助客户解决独特的业务问题。
数据:CPI与PPI 月度同比数据
读取数据
head(data)
## 当月同比 CPI PPI
## 1 36556 -0.2 0.03
## 2 36585 0.7 1.20
## 3 36616 -0.2 1.87
## 4 36646 -0.3 2.59
## 5 36677 0.1 0.67
## 6 36707 0.5 2.95
CPI数据
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3232 -1.2663 -0.5472 0.9925 6.3941
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.05348 0.30673 3.435 0.000731 ***
## t 0.01278 0.00280 4.564 9.05e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.1 on 187 degrees of freedom
## Multiple R-squared: 0.1002, Adjusted R-squared: 0.09543
## F-statistic: 20.83 on 1 and 187 DF, p-value: 9.055e-06
1、 单位根检验
查看数据后发现需要进行季节调整
给出输出结果:
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -2.0274, Lag order = 0, p-value = 0.4353
## alternative hypothesis: explosive
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.66698 -0.36462 0.02973 0.39311 1.97552
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.063e-01 9.513e-02 1.117 0.2653
## z.lag.1 -4.463e-02 2.201e-02 -2.027 0.0441 *
## tt 4.876e-05 8.954e-04 0.054 0.9566
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6307 on 185 degrees of freedom
## Multiple R-squared: 0.0238, Adjusted R-squared: 0.01324
## F-statistic: 2.255 on 2 and 185 DF, p-value: 0.1077
##
##
## Value of test-statistic is: -2.0274 1.5177 2.255
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2 6.22 4.75 4.07
## phi3 8.43 6.49 5.47
PPI数据
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -1.3853, Lag order = 0, p-value = 0.1667
## alternative hypothesis: explosive
(1)若存在单位根,用差分后序列进行2、3、4 步;
(2)若不存在单位根,就用原序列。
因此,对两个数据都进行差分。
data$CPI=c(0,diff(data$CPI))
2、 检验协整关系——EG两步法
给出输出结果
(1)若存在长期协整,用VECM法线性过滤,利用利用过滤后的“残差成分”再进行3,4 步;
(2)若不存在长期协整,就不用过滤,直接进行3、4步。
建立长期均衡模型
## Call:
## lm(formula = PPI ~ CPI, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6930 -0.5071 -0.0322 0.4637 3.2085
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03678 0.06428 -0.572 0.568
## CPI 0.54389 0.10176 5.345 2.61e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8836 on 187 degrees of freedom
## Multiple R-squared: 0.1325, Adjusted R-squared: 0.1279
## F-statistic: 28.57 on 1 and 187 DF, p-value: 2.615e-07
绘制残差
ts.plot( residual
不存在长期协整,就不用过滤,直接进行3、4步
3、 非线性检验——RESET检验方法
给出输出结果
## RESET test
##
## data: data$PPI ~ data$CPI
## RESET = 0.28396, df1 = 1, df2 = 186, p-value = 0.5948
4、 建立VAR模型、格兰杰因果检验
建立VAR模型给出输出结果
## $Granger
##
## Granger causality H0: CPI do not Granger-cause PPI
##
## data: VAR object var.2c
## F-Test = 5.1234, df1 = 2, df2 = 364, p-value = 0.006392
##
##
## $Instant
##
## H0: No instantaneous causality between: CPI and PPI
##
## data: VAR object var.2c
## Chi-squared = 15.015, df = 1, p-value = 0.0001067
p值小于给定的显著性水平拒绝,一般p值小于0.05,特殊情况下可以放宽到0.1。 f统计量大于分位点即可。 一般看p值,F还要查表 本人认为,格兰杰检验主要看P值即可。 例如,若P值小于0.1,则拒绝原假设,变量间存在格兰杰因果关系。
最受欢迎的见解
1.在python中使用lstm和pytorch进行时间序列预测
2.python中利用长短期记忆模型lstm进行时间序列预测分析
3.Python用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID-19新冠疫情新增人数时间序列
4.Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
6.R 语言用RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
7.Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类
9.R语言结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
标签:CPI,##,PPI,检验,价格指数,value,序列,data,格兰杰 From: https://www.cnblogs.com/tecdat/p/17818635.html