首页 > 其他分享 >ABC282H

ABC282H

时间:2023-11-08 22:14:26浏览次数:35  
标签:ABC282H top scanf st 复杂度 rep lld

昨天刚做了这个 trick 的板子题,今天竟然又来一道。

涉及到区间 \(\min\) 和计数,一般的方法是比较难做的。所以可以从笛卡尔树和单调栈的角度入手。这题考虑单调栈,固定最小值位置后,就要计算有多少个跨过该位置,并且最小值在该位置上,还满足题目要求的区间。

解决这个问题可以考虑用单调栈处理出左右第一个比它小的数,然后枚举其中一侧,另一侧用二分找到可行区间。问题就在于应该怎么枚举。我们先猜测每次都枚举更短的那一侧是正确的。交上去,发现过了。

下面浅浅证明一下:设 \(T(n)\) 为序列长度为 \(n\) 时的复杂度。则有 \(T(n)=\max\limits_{2\times x\le n} (T(x)+T(n-x)+O(x))\)。容易发现,每个位置如果产生了一次贡献,则它所在的区间长度至少减半,所以每个位置最多产生 \(O(\log n)\) 次贡献。所以复杂度为 \(O(n\log n)\),再加上二分的复杂度,总复杂度即为 \(O(n\log^2n)\)。

还有一个在这种单调栈处理中常用的技巧:当遇到重复数字又不想算重时,可以考虑一边取等,一边不取的做法,具体可以参考代码。

code:

点击查看代码
int n,top,b[N],st[N],f[N],g[N];
ll m,a[N],s[N];
void Yorushika(){
	scanf("%d%lld",&n,&m);
	rep(i,1,n)scanf("%lld",&a[i]);
	rep(i,1,n)scanf("%d",&b[i]),s[i]=s[i-1]+b[i];
	a[0]=a[n+1]=-1;
	rep(i,1,n+1){
		while(top&&a[st[top]]>=a[i])f[st[top--]]=i;
		st[++top]=i;
	}
	top=0;
	drep(i,n,0){
		while(top&&a[st[top]]>a[i])g[st[top--]]=i;
		st[++top]=i;
	}
	ll ans=0;
	rep(i,1,n){
		if(i-g[i]<=f[i]-i){
			rep(j,g[i],i-1){
				ll x=m+s[j]-a[i];
				int p=upper_bound(s,s+n+1,x)-s-1;
				if(p<i)continue;
				p=min(p,f[i]-1);
				ans+=p-i+1;
			}
		}else{
			rep(j,i,f[i]-1){
				ll x=s[j]+a[i]-m;
				int p=lower_bound(s,s+n+1,x)-s;
				if(p>=i)continue;
				p=max(p,g[i]);
				ans+=i-p;
			}
		}
	}
	printf("%lld\n",ans);
}
signed main(){
	int t=1;
	//	scanf("%d",&t);
	while(t--)
		Yorushika();
}

标签:ABC282H,top,scanf,st,复杂度,rep,lld
From: https://www.cnblogs.com/yinhee/p/ABC282H.html

相关文章

  • Atcoder ABC282H Min + Sum
    https://atcoder.jp/contests/abc282/tasks/abc282_h挂了好久发现二分写挂了……对于\(\min\{a_i\}\)这一部分,不难想到找到当前\(\min\{a_i\}\)的位置计算其左右两......