首页 > 其他分享 >平方 & 立方 & 根号表

平方 & 立方 & 根号表

时间:2023-11-08 21:56:02浏览次数:36  
标签:10 平方 25 36 64 100 立方 根号

平方 & 立方 & 根号表

\(1 \sim 100\) 平方表

\(n\) \(n^2\)
\(1\) \(1\)
\(2\) \(4\)
\(3\) \(9\)
\(4\) \(16\)
\(5\) \(25\)
\(6\) \(36\)
\(7\) \(49\)
\(8\) \(64\)
\(9\) \(81\)
\(10\) \(100\)
\(11\) \(121\)
\(12\) \(144\)
\(13\) \(169\)
\(14\) \(196\)
\(15\) \(225\)
\(16\) \(256\)
\(17\) \(289\)
\(18\) \(324\)
\(19\) \(361\)
\(20\) \(400\)
\(21\) \(441\)
\(22\) \(484\)
\(23\) \(529\)
\(24\) \(576\)
\(25\) \(625\)
\(26\) \(676\)
\(27\) \(729\)
\(28\) \(784\)
\(29\) \(841\)
\(30\) \(900\)
\(31\) \(961\)
\(32\) \(1024\)
\(33\) \(1089\)
\(34\) \(1156\)
\(35\) \(1225\)
\(36\) \(1296\)
\(37\) \(1369\)
\(38\) \(1444\)
\(39\) \(1521\)
\(40\) \(1600\)
\(41\) \(1681\)
\(42\) \(1764\)
\(43\) \(1849\)
\(44\) \(1936\)
\(45\) \(2025\)
\(46\) \(2116\)
\(47\) \(2209\)
\(48\) \(2304\)
\(49\) \(2401\)
\(50\) \(2500\)
\(51\) \(2601\)
\(52\) \(2704\)
\(53\) \(2809\)
\(54\) \(2916\)
\(55\) \(3025\)
\(56\) \(3136\)
\(57\) \(3249\)
\(58\) \(3364\)
\(59\) \(3481\)
\(60\) \(3600\)
\(61\) \(3721\)
\(62\) \(3844\)
\(63\) \(3969\)
\(64\) \(4096\)
\(65\) \(4225\)
\(66\) \(4356\)
\(67\) \(4489\)
\(68\) \(4624\)
\(69\) \(4761\)
\(70\) \(4900\)
\(71\) \(5041\)
\(72\) \(5184\)
\(73\) \(5329\)
\(74\) \(5476\)
\(75\) \(5625\)
\(76\) \(5776\)
\(77\) \(5929\)
\(78\) \(6084\)
\(79\) \(6241\)
\(80\) \(6400\)
\(81\) \(6561\)
\(82\) \(6724\)
\(83\) \(6889\)
\(84\) \(7056\)
\(85\) \(7225\)
\(86\) \(7396\)
\(87\) \(7569\)
\(88\) \(7744\)
\(89\) \(7921\)
\(90\) \(8100\)
\(91\) \(8281\)
\(92\) \(8464\)
\(93\) \(8649\)
\(94\) \(8836\)
\(95\) \(9025\)
\(96\) \(9216\)
\(97\) \(9409\)
\(98\) \(9604\)
\(99\) \(9801\)
\(100\) \(10000\)

\(1 \sim 100\) 立方表

\(n\) \(n^3\)
\(1\) \(1\)
\(2\) \(8\)
\(3\) \(27\)
\(4\) \(64\)
\(5\) \(125\)
\(6\) \(216\)
\(7\) \(343\)
\(8\) \(512\)
\(9\) \(729\)
\(10\) \(1000\)
\(11\) \(1331\)
\(12\) \(1728\)
\(13\) \(2197\)
\(14\) \(2744\)
\(15\) \(3375\)
\(16\) \(4096\)
\(17\) \(4913\)
\(18\) \(5832\)
\(19\) \(6859\)
\(20\) \(8000\)
\(21\) \(9261\)
\(22\) \(10648\)
\(23\) \(12167\)
\(24\) \(13824\)
\(25\) \(15625\)
\(26\) \(17576\)
\(27\) \(19683\)
\(28\) \(21952\)
\(29\) \(24389\)
\(30\) \(27000\)
\(31\) \(29791\)
\(32\) \(32768\)
\(33\) \(35937\)
\(34\) \(39304\)
\(35\) \(42875\)
\(36\) \(46656\)
\(37\) \(50653\)
\(38\) \(54872\)
\(39\) \(59319\)
\(40\) \(64000\)
\(41\) \(68921\)
\(42\) \(74088\)
\(43\) \(79507\)
\(44\) \(85184\)
\(45\) \(91125\)
\(46\) \(97336\)
\(47\) \(103823\)
\(48\) \(110592\)
\(49\) \(117649\)
\(50\) \(125000\)
\(51\) \(132651\)
\(52\) \(140608\)
\(53\) \(148877\)
\(54\) \(157464\)
\(55\) \(166375\)
\(56\) \(175616\)
\(57\) \(185193\)
\(58\) \(195112\)
\(59\) \(205379\)
\(60\) \(216000\)
\(61\) \(226981\)
\(62\) \(238328\)
\(63\) \(250047\)
\(64\) \(262144\)
\(65\) \(274625\)
\(66\) \(287496\)
\(67\) \(300763\)
\(68\) \(314432\)
\(69\) \(328509\)
\(70\) \(343000\)
\(71\) \(357911\)
\(72\) \(373248\)
\(73\) \(389017\)
\(74\) \(405224\)
\(75\) \(421875\)
\(76\) \(438976\)
\(77\) \(456533\)
\(78\) \(474552\)
\(79\) \(493039\)
\(80\) \(512000\)
\(81\) \(531441\)
\(82\) \(551368\)
\(83\) \(571787\)
\(84\) \(592704\)
\(85\) \(614125\)
\(86\) \(636056\)
\(87\) \(658503\)
\(88\) \(681472\)
\(89\) \(704969\)
\(90\) \(729000\)
\(91\) \(753571\)
\(92\) \(778688\)
\(93\) \(804357\)
\(94\) \(830584\)
\(95\) \(857375\)
\(96\) \(884736\)
\(97\) \(912673\)
\(98\) \(941192\)
\(99\) \(970299\)
\(100\) \(1000000\)

\(1 \sim 100\) 根号表(\(eps = 10^{-1}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.0\)
\(2\) \(1.4\)
\(3\) \(1.7\)
\(4\) \(2.0\)
\(5\) \(2.2\)
\(6\) \(2.4\)
\(7\) \(2.6\)
\(8\) \(2.8\)
\(9\) \(3.0\)
\(10\) \(3.2\)
\(11\) \(3.3\)
\(12\) \(3.5\)
\(13\) \(3.6\)
\(14\) \(3.7\)
\(15\) \(3.9\)
\(16\) \(4.0\)
\(17\) \(4.1\)
\(18\) \(4.2\)
\(19\) \(4.4\)
\(20\) \(4.5\)
\(21\) \(4.6\)
\(22\) \(4.7\)
\(23\) \(4.8\)
\(24\) \(4.9\)
\(25\) \(5.0\)
\(26\) \(5.1\)
\(27\) \(5.2\)
\(28\) \(5.3\)
\(29\) \(5.4\)
\(30\) \(5.5\)
\(31\) \(5.6\)
\(32\) \(5.7\)
\(33\) \(5.7\)
\(34\) \(5.8\)
\(35\) \(5.9\)
\(36\) \(6.0\)
\(37\) \(6.1\)
\(38\) \(6.2\)
\(39\) \(6.2\)
\(40\) \(6.3\)
\(41\) \(6.4\)
\(42\) \(6.5\)
\(43\) \(6.6\)
\(44\) \(6.6\)
\(45\) \(6.7\)
\(46\) \(6.8\)
\(47\) \(6.9\)
\(48\) \(6.9\)
\(49\) \(7.0\)
\(50\) \(7.1\)
\(51\) \(7.1\)
\(52\) \(7.2\)
\(53\) \(7.3\)
\(54\) \(7.3\)
\(55\) \(7.4\)
\(56\) \(7.5\)
\(57\) \(7.5\)
\(58\) \(7.6\)
\(59\) \(7.7\)
\(60\) \(7.7\)
\(61\) \(7.8\)
\(62\) \(7.9\)
\(63\) \(7.9\)
\(64\) \(8.0\)
\(65\) \(8.1\)
\(66\) \(8.1\)
\(67\) \(8.2\)
\(68\) \(8.2\)
\(69\) \(8.3\)
\(70\) \(8.4\)
\(71\) \(8.4\)
\(72\) \(8.5\)
\(73\) \(8.5\)
\(74\) \(8.6\)
\(75\) \(8.7\)
\(76\) \(8.7\)
\(77\) \(8.8\)
\(78\) \(8.8\)
\(79\) \(8.9\)
\(80\) \(8.9\)
\(81\) \(9.0\)
\(82\) \(9.1\)
\(83\) \(9.1\)
\(84\) \(9.2\)
\(85\) \(9.2\)
\(86\) \(9.3\)
\(87\) \(9.3\)
\(88\) \(9.4\)
\(89\) \(9.4\)
\(90\) \(9.5\)
\(91\) \(9.5\)
\(92\) \(9.6\)
\(93\) \(9.6\)
\(94\) \(9.7\)
\(95\) \(9.7\)
\(96\) \(9.8\)
\(97\) \(9.8\)
\(98\) \(9.9\)
\(99\) \(9.9\)
\(100\) \(10.0\)

\(1 \sim 100\) 根号表(\(eps = 10^{-2}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.00\)
\(2\) \(1.41\)
\(3\) \(1.73\)
\(4\) \(2.00\)
\(5\) \(2.24\)
\(6\) \(2.45\)
\(7\) \(2.65\)
\(8\) \(2.83\)
\(9\) \(3.00\)
\(10\) \(3.16\)
\(11\) \(3.32\)
\(12\) \(3.46\)
\(13\) \(3.61\)
\(14\) \(3.74\)
\(15\) \(3.87\)
\(16\) \(4.00\)
\(17\) \(4.12\)
\(18\) \(4.24\)
\(19\) \(4.36\)
\(20\) \(4.47\)
\(21\) \(4.58\)
\(22\) \(4.69\)
\(23\) \(4.80\)
\(24\) \(4.90\)
\(25\) \(5.00\)
\(26\) \(5.10\)
\(27\) \(5.20\)
\(28\) \(5.29\)
\(29\) \(5.39\)
\(30\) \(5.48\)
\(31\) \(5.57\)
\(32\) \(5.66\)
\(33\) \(5.74\)
\(34\) \(5.83\)
\(35\) \(5.92\)
\(36\) \(6.00\)
\(37\) \(6.08\)
\(38\) \(6.16\)
\(39\) \(6.24\)
\(40\) \(6.32\)
\(41\) \(6.40\)
\(42\) \(6.48\)
\(43\) \(6.56\)
\(44\) \(6.63\)
\(45\) \(6.71\)
\(46\) \(6.78\)
\(47\) \(6.86\)
\(48\) \(6.93\)
\(49\) \(7.00\)
\(50\) \(7.07\)
\(51\) \(7.14\)
\(52\) \(7.21\)
\(53\) \(7.28\)
\(54\) \(7.35\)
\(55\) \(7.42\)
\(56\) \(7.48\)
\(57\) \(7.55\)
\(58\) \(7.62\)
\(59\) \(7.68\)
\(60\) \(7.75\)
\(61\) \(7.81\)
\(62\) \(7.87\)
\(63\) \(7.94\)
\(64\) \(8.00\)
\(65\) \(8.06\)
\(66\) \(8.12\)
\(67\) \(8.19\)
\(68\) \(8.25\)
\(69\) \(8.31\)
\(70\) \(8.37\)
\(71\) \(8.43\)
\(72\) \(8.49\)
\(73\) \(8.54\)
\(74\) \(8.60\)
\(75\) \(8.66\)
\(76\) \(8.72\)
\(77\) \(8.77\)
\(78\) \(8.83\)
\(79\) \(8.89\)
\(80\) \(8.94\)
\(81\) \(9.00\)
\(82\) \(9.06\)
\(83\) \(9.11\)
\(84\) \(9.17\)
\(85\) \(9.22\)
\(86\) \(9.27\)
\(87\) \(9.33\)
\(88\) \(9.38\)
\(89\) \(9.43\)
\(90\) \(9.49\)
\(91\) \(9.54\)
\(92\) \(9.59\)
\(93\) \(9.64\)
\(94\) \(9.70\)
\(95\) \(9.75\)
\(96\) \(9.80\)
\(97\) \(9.85\)
\(98\) \(9.90\)
\(99\) \(9.95\)
\(100\) \(10.00\)

\(1 \sim 100\) 根号表(\(eps = 10^{-3}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.000\)
\(2\) \(1.414\)
\(3\) \(1.732\)
\(4\) \(2.000\)
\(5\) \(2.236\)
\(6\) \(2.449\)
\(7\) \(2.646\)
\(8\) \(2.828\)
\(9\) \(3.000\)
\(10\) \(3.162\)
\(11\) \(3.317\)
\(12\) \(3.464\)
\(13\) \(3.606\)
\(14\) \(3.742\)
\(15\) \(3.873\)
\(16\) \(4.000\)
\(17\) \(4.123\)
\(18\) \(4.243\)
\(19\) \(4.359\)
\(20\) \(4.472\)
\(21\) \(4.583\)
\(22\) \(4.690\)
\(23\) \(4.796\)
\(24\) \(4.899\)
\(25\) \(5.000\)
\(26\) \(5.099\)
\(27\) \(5.196\)
\(28\) \(5.292\)
\(29\) \(5.385\)
\(30\) \(5.477\)
\(31\) \(5.568\)
\(32\) \(5.657\)
\(33\) \(5.745\)
\(34\) \(5.831\)
\(35\) \(5.916\)
\(36\) \(6.000\)
\(37\) \(6.083\)
\(38\) \(6.164\)
\(39\) \(6.245\)
\(40\) \(6.325\)
\(41\) \(6.403\)
\(42\) \(6.481\)
\(43\) \(6.557\)
\(44\) \(6.633\)
\(45\) \(6.708\)
\(46\) \(6.782\)
\(47\) \(6.856\)
\(48\) \(6.928\)
\(49\) \(7.000\)
\(50\) \(7.071\)
\(51\) \(7.141\)
\(52\) \(7.211\)
\(53\) \(7.280\)
\(54\) \(7.348\)
\(55\) \(7.416\)
\(56\) \(7.483\)
\(57\) \(7.550\)
\(58\) \(7.616\)
\(59\) \(7.681\)
\(60\) \(7.746\)
\(61\) \(7.810\)
\(62\) \(7.874\)
\(63\) \(7.937\)
\(64\) \(8.000\)
\(65\) \(8.062\)
\(66\) \(8.124\)
\(67\) \(8.185\)
\(68\) \(8.246\)
\(69\) \(8.307\)
\(70\) \(8.367\)
\(71\) \(8.426\)
\(72\) \(8.485\)
\(73\) \(8.544\)
\(74\) \(8.602\)
\(75\) \(8.660\)
\(76\) \(8.718\)
\(77\) \(8.775\)
\(78\) \(8.832\)
\(79\) \(8.888\)
\(80\) \(8.944\)
\(81\) \(9.000\)
\(82\) \(9.055\)
\(83\) \(9.110\)
\(84\) \(9.165\)
\(85\) \(9.220\)
\(86\) \(9.274\)
\(87\) \(9.327\)
\(88\) \(9.381\)
\(89\) \(9.434\)
\(90\) \(9.487\)
\(91\) \(9.539\)
\(92\) \(9.592\)
\(93\) \(9.644\)
\(94\) \(9.695\)
\(95\) \(9.747\)
\(96\) \(9.798\)
\(97\) \(9.849\)
\(98\) \(9.899\)
\(99\) \(9.950\)
\(100\) \(10.000\)

\(1 \sim 100\) 根号表(\(eps = 10^{-4}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.0000\)
\(2\) \(1.4142\)
\(3\) \(1.7321\)
\(4\) \(2.0000\)
\(5\) \(2.2361\)
\(6\) \(2.4495\)
\(7\) \(2.6458\)
\(8\) \(2.8284\)
\(9\) \(3.0000\)
\(10\) \(3.1623\)
\(11\) \(3.3166\)
\(12\) \(3.4641\)
\(13\) \(3.6056\)
\(14\) \(3.7417\)
\(15\) \(3.8730\)
\(16\) \(4.0000\)
\(17\) \(4.1231\)
\(18\) \(4.2426\)
\(19\) \(4.3589\)
\(20\) \(4.4721\)
\(21\) \(4.5826\)
\(22\) \(4.6904\)
\(23\) \(4.7958\)
\(24\) \(4.8990\)
\(25\) \(5.0000\)
\(26\) \(5.0990\)
\(27\) \(5.1962\)
\(28\) \(5.2915\)
\(29\) \(5.3852\)
\(30\) \(5.4772\)
\(31\) \(5.5678\)
\(32\) \(5.6569\)
\(33\) \(5.7446\)
\(34\) \(5.8310\)
\(35\) \(5.9161\)
\(36\) \(6.0000\)
\(37\) \(6.0828\)
\(38\) \(6.1644\)
\(39\) \(6.2450\)
\(40\) \(6.3246\)
\(41\) \(6.4031\)
\(42\) \(6.4807\)
\(43\) \(6.5574\)
\(44\) \(6.6332\)
\(45\) \(6.7082\)
\(46\) \(6.7823\)
\(47\) \(6.8557\)
\(48\) \(6.9282\)
\(49\) \(7.0000\)
\(50\) \(7.0711\)
\(51\) \(7.1414\)
\(52\) \(7.2111\)
\(53\) \(7.2801\)
\(54\) \(7.3485\)
\(55\) \(7.4162\)
\(56\) \(7.4833\)
\(57\) \(7.5498\)
\(58\) \(7.6158\)
\(59\) \(7.6811\)
\(60\) \(7.7460\)
\(61\) \(7.8102\)
\(62\) \(7.8740\)
\(63\) \(7.9373\)
\(64\) \(8.0000\)
\(65\) \(8.0623\)
\(66\) \(8.1240\)
\(67\) \(8.1854\)
\(68\) \(8.2462\)
\(69\) \(8.3066\)
\(70\) \(8.3666\)
\(71\) \(8.4261\)
\(72\) \(8.4853\)
\(73\) \(8.5440\)
\(74\) \(8.6023\)
\(75\) \(8.6603\)
\(76\) \(8.7178\)
\(77\) \(8.7750\)
\(78\) \(8.8318\)
\(79\) \(8.8882\)
\(80\) \(8.9443\)
\(81\) \(9.0000\)
\(82\) \(9.0554\)
\(83\) \(9.1104\)
\(84\) \(9.1652\)
\(85\) \(9.2195\)
\(86\) \(9.2736\)
\(87\) \(9.3274\)
\(88\) \(9.3808\)
\(89\) \(9.4340\)
\(90\) \(9.4868\)
\(91\) \(9.5394\)
\(92\) \(9.5917\)
\(93\) \(9.6437\)
\(94\) \(9.6954\)
\(95\) \(9.7468\)
\(96\) \(9.7980\)
\(97\) \(9.8489\)
\(98\) \(9.8995\)
\(99\) \(9.9499\)
\(100\) \(10.0000\)

\(1 \sim 100\) 根号表(\(eps = 10^{-5}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.00000\)
\(2\) \(1.41421\)
\(3\) \(1.73205\)
\(4\) \(2.00000\)
\(5\) \(2.23607\)
\(6\) \(2.44949\)
\(7\) \(2.64575\)
\(8\) \(2.82843\)
\(9\) \(3.00000\)
\(10\) \(3.16228\)
\(11\) \(3.31662\)
\(12\) \(3.46410\)
\(13\) \(3.60555\)
\(14\) \(3.74166\)
\(15\) \(3.87298\)
\(16\) \(4.00000\)
\(17\) \(4.12311\)
\(18\) \(4.24264\)
\(19\) \(4.35890\)
\(20\) \(4.47214\)
\(21\) \(4.58258\)
\(22\) \(4.69042\)
\(23\) \(4.79583\)
\(24\) \(4.89898\)
\(25\) \(5.00000\)
\(26\) \(5.09902\)
\(27\) \(5.19615\)
\(28\) \(5.29150\)
\(29\) \(5.38516\)
\(30\) \(5.47723\)
\(31\) \(5.56776\)
\(32\) \(5.65685\)
\(33\) \(5.74456\)
\(34\) \(5.83095\)
\(35\) \(5.91608\)
\(36\) \(6.00000\)
\(37\) \(6.08276\)
\(38\) \(6.16441\)
\(39\) \(6.24500\)
\(40\) \(6.32456\)
\(41\) \(6.40312\)
\(42\) \(6.48074\)
\(43\) \(6.55744\)
\(44\) \(6.63325\)
\(45\) \(6.70820\)
\(46\) \(6.78233\)
\(47\) \(6.85565\)
\(48\) \(6.92820\)
\(49\) \(7.00000\)
\(50\) \(7.07107\)
\(51\) \(7.14143\)
\(52\) \(7.21110\)
\(53\) \(7.28011\)
\(54\) \(7.34847\)
\(55\) \(7.41620\)
\(56\) \(7.48331\)
\(57\) \(7.54983\)
\(58\) \(7.61577\)
\(59\) \(7.68115\)
\(60\) \(7.74597\)
\(61\) \(7.81025\)
\(62\) \(7.87401\)
\(63\) \(7.93725\)
\(64\) \(8.00000\)
\(65\) \(8.06226\)
\(66\) \(8.12404\)
\(67\) \(8.18535\)
\(68\) \(8.24621\)
\(69\) \(8.30662\)
\(70\) \(8.36660\)
\(71\) \(8.42615\)
\(72\) \(8.48528\)
\(73\) \(8.54400\)
\(74\) \(8.60233\)
\(75\) \(8.66025\)
\(76\) \(8.71780\)
\(77\) \(8.77496\)
\(78\) \(8.83176\)
\(79\) \(8.88819\)
\(80\) \(8.94427\)
\(81\) \(9.00000\)
\(82\) \(9.05539\)
\(83\) \(9.11043\)
\(84\) \(9.16515\)
\(85\) \(9.21954\)
\(86\) \(9.27362\)
\(87\) \(9.32738\)
\(88\) \(9.38083\)
\(89\) \(9.43398\)
\(90\) \(9.48683\)
\(91\) \(9.53939\)
\(92\) \(9.59166\)
\(93\) \(9.64365\)
\(94\) \(9.69536\)
\(95\) \(9.74679\)
\(96\) \(9.79796\)
\(97\) \(9.84886\)
\(98\) \(9.89949\)
\(99\) \(9.94987\)
\(100\) \(10.00000\)

\(1 \sim 100\) 根号表(\(eps = 10^{-6}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.000000\)
\(2\) \(1.414214\)
\(3\) \(1.732051\)
\(4\) \(2.000000\)
\(5\) \(2.236068\)
\(6\) \(2.449490\)
\(7\) \(2.645751\)
\(8\) \(2.828427\)
\(9\) \(3.000000\)
\(10\) \(3.162278\)
\(11\) \(3.316625\)
\(12\) \(3.464102\)
\(13\) \(3.605551\)
\(14\) \(3.741657\)
\(15\) \(3.872983\)
\(16\) \(4.000000\)
\(17\) \(4.123106\)
\(18\) \(4.242641\)
\(19\) \(4.358899\)
\(20\) \(4.472136\)
\(21\) \(4.582576\)
\(22\) \(4.690416\)
\(23\) \(4.795832\)
\(24\) \(4.898979\)
\(25\) \(5.000000\)
\(26\) \(5.099020\)
\(27\) \(5.196152\)
\(28\) \(5.291503\)
\(29\) \(5.385165\)
\(30\) \(5.477226\)
\(31\) \(5.567764\)
\(32\) \(5.656854\)
\(33\) \(5.744563\)
\(34\) \(5.830952\)
\(35\) \(5.916080\)
\(36\) \(6.000000\)
\(37\) \(6.082763\)
\(38\) \(6.164414\)
\(39\) \(6.244998\)
\(40\) \(6.324555\)
\(41\) \(6.403124\)
\(42\) \(6.480741\)
\(43\) \(6.557439\)
\(44\) \(6.633250\)
\(45\) \(6.708204\)
\(46\) \(6.782330\)
\(47\) \(6.855655\)
\(48\) \(6.928203\)
\(49\) \(7.000000\)
\(50\) \(7.071068\)
\(51\) \(7.141428\)
\(52\) \(7.211103\)
\(53\) \(7.280110\)
\(54\) \(7.348469\)
\(55\) \(7.416198\)
\(56\) \(7.483315\)
\(57\) \(7.549834\)
\(58\) \(7.615773\)
\(59\) \(7.681146\)
\(60\) \(7.745967\)
\(61\) \(7.810250\)
\(62\) \(7.874008\)
\(63\) \(7.937254\)
\(64\) \(8.000000\)
\(65\) \(8.062258\)
\(66\) \(8.124038\)
\(67\) \(8.185353\)
\(68\) \(8.246211\)
\(69\) \(8.306624\)
\(70\) \(8.366600\)
\(71\) \(8.426150\)
\(72\) \(8.485281\)
\(73\) \(8.544004\)
\(74\) \(8.602325\)
\(75\) \(8.660254\)
\(76\) \(8.717798\)
\(77\) \(8.774964\)
\(78\) \(8.831761\)
\(79\) \(8.888194\)
\(80\) \(8.944272\)
\(81\) \(9.000000\)
\(82\) \(9.055385\)
\(83\) \(9.110434\)
\(84\) \(9.165151\)
\(85\) \(9.219544\)
\(86\) \(9.273618\)
\(87\) \(9.327379\)
\(88\) \(9.380832\)
\(89\) \(9.433981\)
\(90\) \(9.486833\)
\(91\) \(9.539392\)
\(92\) \(9.591663\)
\(93\) \(9.643651\)
\(94\) \(9.695360\)
\(95\) \(9.746794\)
\(96\) \(9.797959\)
\(97\) \(9.848858\)
\(98\) \(9.899495\)
\(99\) \(9.949874\)
\(100\) \(10.000000\)

\(1 \sim 100\) 根号表(\(eps = 10^{-7}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.0000000\)
\(2\) \(1.4142136\)
\(3\) \(1.7320508\)
\(4\) \(2.0000000\)
\(5\) \(2.2360680\)
\(6\) \(2.4494897\)
\(7\) \(2.6457513\)
\(8\) \(2.8284271\)
\(9\) \(3.0000000\)
\(10\) \(3.1622777\)
\(11\) \(3.3166248\)
\(12\) \(3.4641016\)
\(13\) \(3.6055513\)
\(14\) \(3.7416574\)
\(15\) \(3.8729833\)
\(16\) \(4.0000000\)
\(17\) \(4.1231056\)
\(18\) \(4.2426407\)
\(19\) \(4.3588989\)
\(20\) \(4.4721360\)
\(21\) \(4.5825757\)
\(22\) \(4.6904158\)
\(23\) \(4.7958315\)
\(24\) \(4.8989795\)
\(25\) \(5.0000000\)
\(26\) \(5.0990195\)
\(27\) \(5.1961524\)
\(28\) \(5.2915026\)
\(29\) \(5.3851648\)
\(30\) \(5.4772256\)
\(31\) \(5.5677644\)
\(32\) \(5.6568542\)
\(33\) \(5.7445626\)
\(34\) \(5.8309519\)
\(35\) \(5.9160798\)
\(36\) \(6.0000000\)
\(37\) \(6.0827625\)
\(38\) \(6.1644140\)
\(39\) \(6.2449980\)
\(40\) \(6.3245553\)
\(41\) \(6.4031242\)
\(42\) \(6.4807407\)
\(43\) \(6.5574385\)
\(44\) \(6.6332496\)
\(45\) \(6.7082039\)
\(46\) \(6.7823300\)
\(47\) \(6.8556546\)
\(48\) \(6.9282032\)
\(49\) \(7.0000000\)
\(50\) \(7.0710678\)
\(51\) \(7.1414284\)
\(52\) \(7.2111026\)
\(53\) \(7.2801099\)
\(54\) \(7.3484692\)
\(55\) \(7.4161985\)
\(56\) \(7.4833148\)
\(57\) \(7.5498344\)
\(58\) \(7.6157731\)
\(59\) \(7.6811457\)
\(60\) \(7.7459667\)
\(61\) \(7.8102497\)
\(62\) \(7.8740079\)
\(63\) \(7.9372539\)
\(64\) \(8.0000000\)
\(65\) \(8.0622577\)
\(66\) \(8.1240384\)
\(67\) \(8.1853528\)
\(68\) \(8.2462113\)
\(69\) \(8.3066239\)
\(70\) \(8.3666003\)
\(71\) \(8.4261498\)
\(72\) \(8.4852814\)
\(73\) \(8.5440037\)
\(74\) \(8.6023253\)
\(75\) \(8.6602540\)
\(76\) \(8.7177979\)
\(77\) \(8.7749644\)
\(78\) \(8.8317609\)
\(79\) \(8.8881944\)
\(80\) \(8.9442719\)
\(81\) \(9.0000000\)
\(82\) \(9.0553851\)
\(83\) \(9.1104336\)
\(84\) \(9.1651514\)
\(85\) \(9.2195445\)
\(86\) \(9.2736185\)
\(87\) \(9.3273791\)
\(88\) \(9.3808315\)
\(89\) \(9.4339811\)
\(90\) \(9.4868330\)
\(91\) \(9.5393920\)
\(92\) \(9.5916630\)
\(93\) \(9.6436508\)
\(94\) \(9.6953597\)
\(95\) \(9.7467943\)
\(96\) \(9.7979590\)
\(97\) \(9.8488578\)
\(98\) \(9.8994949\)
\(99\) \(9.9498744\)
\(100\) \(10.0000000\)

\(1 \sim 100\) 根号表(\(eps = 10^{-8}\))

\(n\) \(\sqrt{n}\)
\(1\) \(1.00000000\)
\(2\) \(1.41421356\)
\(3\) \(1.73205081\)
\(4\) \(2.00000000\)
\(5\) \(2.23606798\)
\(6\) \(2.44948974\)
\(7\) \(2.64575131\)
\(8\) \(2.82842712\)
\(9\) \(3.00000000\)
\(10\) \(3.16227766\)
\(11\) \(3.31662479\)
\(12\) \(3.46410162\)
\(13\) \(3.60555128\)
\(14\) \(3.74165739\)
\(15\) \(3.87298335\)
\(16\) \(4.00000000\)
\(17\) \(4.12310563\)
\(18\) \(4.24264069\)
\(19\) \(4.35889894\)
\(20\) \(4.47213595\)
\(21\) \(4.58257569\)
\(22\) \(4.69041576\)
\(23\) \(4.79583152\)
\(24\) \(4.89897949\)
\(25\) \(5.00000000\)
\(26\) \(5.09901951\)
\(27\) \(5.19615242\)
\(28\) \(5.29150262\)
\(29\) \(5.38516481\)
\(30\) \(5.47722558\)
\(31\) \(5.56776436\)
\(32\) \(5.65685425\)
\(33\) \(5.74456265\)
\(34\) \(5.83095189\)
\(35\) \(5.91607978\)
\(36\) \(6.00000000\)
\(37\) \(6.08276253\)
\(38\) \(6.16441400\)
\(39\) \(6.24499800\)
\(40\) \(6.32455532\)
\(41\) \(6.40312424\)
\(42\) \(6.48074070\)
\(43\) \(6.55743852\)
\(44\) \(6.63324958\)
\(45\) \(6.70820393\)
\(46\) \(6.78232998\)
\(47\) \(6.85565460\)
\(48\) \(6.92820323\)
\(49\) \(7.00000000\)
\(50\) \(7.07106781\)
\(51\) \(7.14142843\)
\(52\) \(7.21110255\)
\(53\) \(7.28010989\)
\(54\) \(7.34846923\)
\(55\) \(7.41619849\)
\(56\) \(7.48331477\)
\(57\) \(7.54983444\)
\(58\) \(7.61577311\)
\(59\) \(7.68114575\)
\(60\) \(7.74596669\)
\(61\) \(7.81024968\)
\(62\) \(7.87400787\)
\(63\) \(7.93725393\)
\(64\) \(8.00000000\)
\(65\) \(8.06225775\)
\(66\) \(8.12403840\)
\(67\) \(8.18535277\)
\(68\) \(8.24621125\)
\(69\) \(8.30662386\)
\(70\) \(8.36660027\)
\(71\) \(8.42614977\)
\(72\) \(8.48528137\)
\(73\) \(8.54400375\)
\(74\) \(8.60232527\)
\(75\) \(8.66025404\)
\(76\) \(8.71779789\)
\(77\) \(8.77496439\)
\(78\) \(8.83176087\)
\(79\) \(8.88819442\)
\(80\) \(8.94427191\)
\(81\) \(9.00000000\)
\(82\) \(9.05538514\)
\(83\) \(9.11043358\)
\(84\) \(9.16515139\)
\(85\) \(9.21954446\)
\(86\) \(9.27361850\)
\(87\) \(9.32737905\)
\(88\) \(9.38083152\)
\(89\) \(9.43398113\)
\(90\) \(9.48683298\)
\(91\) \(9.53939201\)
\(92\) \(9.59166305\)
\(93\) \(9.64365076\)
\(94\) \(9.69535971\)
\(95\) \(9.74679434\)
\(96\) \(9.79795897\)
\(97\) \(9.84885780\)
\(98\) \(9.89949494\)
\(99\) \(9.94987437\)
\(100\) \(10.00000000\)

标签:10,平方,25,36,64,100,立方,根号
From: https://www.cnblogs.com/bc2qwq/p/pow2pow3sqrtdabiao.html

相关文章

  • L5-367. 有效的完全平方数
     解决方法:加一个num=1的判断条件即可因为下标从0开始,当num=1时,left、right、mid的下标都是0,这样mid*mid=0,所以X=1时要单独考虑classSolution{publicbooleanisPerfectSquare(intnum){longleft=0,right=num-1;//官方题解......
  • L4: 69.x的平方根
    给你一个非负整数 x ,计算并返回 x 的 算术平方根 。由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去。注意:不允许使用任何内置指数函数和算符,例如 pow(x,0.5) 或者 x**0.5 。 示例1:输入:x=4输出:2示例2:输入:x=8输出:2解释:8的算术平方根......
  • 根号分治
    Problem给定一个长度为\(S\)字符串\(s\)与一个正整数\(q\),接下来有\(q\)次询问,第\(i\)次询问给出一个长度为\(T_i\)字符串\(t_i\),求\(t_i\)在\(s\)的出现次数。保证\(S,q,\sum^q_{i=1}T_i\leq10^5\)。Solution后缀自动机,但是我不会。注意到\(\sum^q_{i=1}......
  • 5G通信技术:具备百万连接/平方公里的设备连接能力
    5G是指第五代移动通信技术,是具有高速率、低时延和大连接特点的新一代宽带移动通信技术。5G通讯设施是实现人机物互联的网络基础设施。与4G相比,5G的速度更快,时延更短,连接能力更强。5G移动网络的速度通常会比4G更快。在某些情况下,5G的峰值速率可以达到10-20Gbit/s,以满足高清视频、虚......
  • 项目管理之干系人立方体分析
    项目管理之干系人立方体分析我们常见干系人权力利益方格、权力影响方格,或作用影响方格:基于干系人的职权级别(权力)、对项目成果的关心程度(利益)、对项目成果的影响能力(影响),或改变项目计划或执行的能力,每一种方格都可用于对干系人进行分类。对于小型项目、干系人与项目的关系很......
  • 计算x的平方根
    publicclassSolution{publicintmySqrt(inta){if(a<2)returna;intstart=2;intend=a/2;intmid=0;while(start<=end){mid=start+(end-start)/2;longnum=(lo......
  • 平方数和立方数
    题目描述已知两个正整数a和b,求在a与b之间(包含a和b)的所有整数中平方数和立方数的个数。平方数指的是可以写成某个整数的平方,如4,16,25,81,…;立方数指的是可以写成某个整数的立方,如27,64,125,…输入格式多组数据(不超过100000组),每组数据2个整数a,b。(1≤a≤b≤1000000)。输出格式......
  • day 2 数组 977.有序数组的平方、209.长度最小的子数组、59.螺旋矩阵 Ⅱ
    977.有序数组的平方题目链接:977.有序数组的平方视频教程文章教程思路最直观的解法:暴力解题,每个数先平方,然后再快速排序,时间复杂度为O(n+nlogn)规律:该数组本身是非递减顺序,在平方后其实依然有顺序,左右两边大中间小。双指针利用观察到的规律,可以利用双指针在数......
  • 平方根倒数快速算法
    平方根倒数快速算法平方根常出现在游戏的图形计算中,尤其是求一个向量的基向量时约翰卡马克的代码floatQ_rsqrt(floatnumber){ longi; floatx2,y; constfloatthreehalfs=1.5F; x2=number*0.5F; y=number; i=*(long*)&y;......
  • 代码随想录算法训练营第一天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩
    今日学习的文章链接和视频链接https://programmercarl.com/0977.有序数组的平方.htmlhttps://programmercarl.com/0209.长度最小的子数组.htmlhttps://programmercarl.com/0059.螺旋矩阵II.html977.有序数组的平方菜鸡刚开始只会暴力,记录一下双指针:varsortedSquares=......