标签:10 平方 25 36 64 100 立方 根号
平方 & 立方 & 根号表
\(1 \sim 100\) 平方表
\(n\) |
\(n^2\) |
\(1\) |
\(1\) |
\(2\) |
\(4\) |
\(3\) |
\(9\) |
\(4\) |
\(16\) |
\(5\) |
\(25\) |
\(6\) |
\(36\) |
\(7\) |
\(49\) |
\(8\) |
\(64\) |
\(9\) |
\(81\) |
\(10\) |
\(100\) |
\(11\) |
\(121\) |
\(12\) |
\(144\) |
\(13\) |
\(169\) |
\(14\) |
\(196\) |
\(15\) |
\(225\) |
\(16\) |
\(256\) |
\(17\) |
\(289\) |
\(18\) |
\(324\) |
\(19\) |
\(361\) |
\(20\) |
\(400\) |
\(21\) |
\(441\) |
\(22\) |
\(484\) |
\(23\) |
\(529\) |
\(24\) |
\(576\) |
\(25\) |
\(625\) |
\(26\) |
\(676\) |
\(27\) |
\(729\) |
\(28\) |
\(784\) |
\(29\) |
\(841\) |
\(30\) |
\(900\) |
\(31\) |
\(961\) |
\(32\) |
\(1024\) |
\(33\) |
\(1089\) |
\(34\) |
\(1156\) |
\(35\) |
\(1225\) |
\(36\) |
\(1296\) |
\(37\) |
\(1369\) |
\(38\) |
\(1444\) |
\(39\) |
\(1521\) |
\(40\) |
\(1600\) |
\(41\) |
\(1681\) |
\(42\) |
\(1764\) |
\(43\) |
\(1849\) |
\(44\) |
\(1936\) |
\(45\) |
\(2025\) |
\(46\) |
\(2116\) |
\(47\) |
\(2209\) |
\(48\) |
\(2304\) |
\(49\) |
\(2401\) |
\(50\) |
\(2500\) |
\(51\) |
\(2601\) |
\(52\) |
\(2704\) |
\(53\) |
\(2809\) |
\(54\) |
\(2916\) |
\(55\) |
\(3025\) |
\(56\) |
\(3136\) |
\(57\) |
\(3249\) |
\(58\) |
\(3364\) |
\(59\) |
\(3481\) |
\(60\) |
\(3600\) |
\(61\) |
\(3721\) |
\(62\) |
\(3844\) |
\(63\) |
\(3969\) |
\(64\) |
\(4096\) |
\(65\) |
\(4225\) |
\(66\) |
\(4356\) |
\(67\) |
\(4489\) |
\(68\) |
\(4624\) |
\(69\) |
\(4761\) |
\(70\) |
\(4900\) |
\(71\) |
\(5041\) |
\(72\) |
\(5184\) |
\(73\) |
\(5329\) |
\(74\) |
\(5476\) |
\(75\) |
\(5625\) |
\(76\) |
\(5776\) |
\(77\) |
\(5929\) |
\(78\) |
\(6084\) |
\(79\) |
\(6241\) |
\(80\) |
\(6400\) |
\(81\) |
\(6561\) |
\(82\) |
\(6724\) |
\(83\) |
\(6889\) |
\(84\) |
\(7056\) |
\(85\) |
\(7225\) |
\(86\) |
\(7396\) |
\(87\) |
\(7569\) |
\(88\) |
\(7744\) |
\(89\) |
\(7921\) |
\(90\) |
\(8100\) |
\(91\) |
\(8281\) |
\(92\) |
\(8464\) |
\(93\) |
\(8649\) |
\(94\) |
\(8836\) |
\(95\) |
\(9025\) |
\(96\) |
\(9216\) |
\(97\) |
\(9409\) |
\(98\) |
\(9604\) |
\(99\) |
\(9801\) |
\(100\) |
\(10000\) |
\(1 \sim 100\) 立方表
\(n\) |
\(n^3\) |
\(1\) |
\(1\) |
\(2\) |
\(8\) |
\(3\) |
\(27\) |
\(4\) |
\(64\) |
\(5\) |
\(125\) |
\(6\) |
\(216\) |
\(7\) |
\(343\) |
\(8\) |
\(512\) |
\(9\) |
\(729\) |
\(10\) |
\(1000\) |
\(11\) |
\(1331\) |
\(12\) |
\(1728\) |
\(13\) |
\(2197\) |
\(14\) |
\(2744\) |
\(15\) |
\(3375\) |
\(16\) |
\(4096\) |
\(17\) |
\(4913\) |
\(18\) |
\(5832\) |
\(19\) |
\(6859\) |
\(20\) |
\(8000\) |
\(21\) |
\(9261\) |
\(22\) |
\(10648\) |
\(23\) |
\(12167\) |
\(24\) |
\(13824\) |
\(25\) |
\(15625\) |
\(26\) |
\(17576\) |
\(27\) |
\(19683\) |
\(28\) |
\(21952\) |
\(29\) |
\(24389\) |
\(30\) |
\(27000\) |
\(31\) |
\(29791\) |
\(32\) |
\(32768\) |
\(33\) |
\(35937\) |
\(34\) |
\(39304\) |
\(35\) |
\(42875\) |
\(36\) |
\(46656\) |
\(37\) |
\(50653\) |
\(38\) |
\(54872\) |
\(39\) |
\(59319\) |
\(40\) |
\(64000\) |
\(41\) |
\(68921\) |
\(42\) |
\(74088\) |
\(43\) |
\(79507\) |
\(44\) |
\(85184\) |
\(45\) |
\(91125\) |
\(46\) |
\(97336\) |
\(47\) |
\(103823\) |
\(48\) |
\(110592\) |
\(49\) |
\(117649\) |
\(50\) |
\(125000\) |
\(51\) |
\(132651\) |
\(52\) |
\(140608\) |
\(53\) |
\(148877\) |
\(54\) |
\(157464\) |
\(55\) |
\(166375\) |
\(56\) |
\(175616\) |
\(57\) |
\(185193\) |
\(58\) |
\(195112\) |
\(59\) |
\(205379\) |
\(60\) |
\(216000\) |
\(61\) |
\(226981\) |
\(62\) |
\(238328\) |
\(63\) |
\(250047\) |
\(64\) |
\(262144\) |
\(65\) |
\(274625\) |
\(66\) |
\(287496\) |
\(67\) |
\(300763\) |
\(68\) |
\(314432\) |
\(69\) |
\(328509\) |
\(70\) |
\(343000\) |
\(71\) |
\(357911\) |
\(72\) |
\(373248\) |
\(73\) |
\(389017\) |
\(74\) |
\(405224\) |
\(75\) |
\(421875\) |
\(76\) |
\(438976\) |
\(77\) |
\(456533\) |
\(78\) |
\(474552\) |
\(79\) |
\(493039\) |
\(80\) |
\(512000\) |
\(81\) |
\(531441\) |
\(82\) |
\(551368\) |
\(83\) |
\(571787\) |
\(84\) |
\(592704\) |
\(85\) |
\(614125\) |
\(86\) |
\(636056\) |
\(87\) |
\(658503\) |
\(88\) |
\(681472\) |
\(89\) |
\(704969\) |
\(90\) |
\(729000\) |
\(91\) |
\(753571\) |
\(92\) |
\(778688\) |
\(93\) |
\(804357\) |
\(94\) |
\(830584\) |
\(95\) |
\(857375\) |
\(96\) |
\(884736\) |
\(97\) |
\(912673\) |
\(98\) |
\(941192\) |
\(99\) |
\(970299\) |
\(100\) |
\(1000000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-1}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.0\) |
\(2\) |
\(1.4\) |
\(3\) |
\(1.7\) |
\(4\) |
\(2.0\) |
\(5\) |
\(2.2\) |
\(6\) |
\(2.4\) |
\(7\) |
\(2.6\) |
\(8\) |
\(2.8\) |
\(9\) |
\(3.0\) |
\(10\) |
\(3.2\) |
\(11\) |
\(3.3\) |
\(12\) |
\(3.5\) |
\(13\) |
\(3.6\) |
\(14\) |
\(3.7\) |
\(15\) |
\(3.9\) |
\(16\) |
\(4.0\) |
\(17\) |
\(4.1\) |
\(18\) |
\(4.2\) |
\(19\) |
\(4.4\) |
\(20\) |
\(4.5\) |
\(21\) |
\(4.6\) |
\(22\) |
\(4.7\) |
\(23\) |
\(4.8\) |
\(24\) |
\(4.9\) |
\(25\) |
\(5.0\) |
\(26\) |
\(5.1\) |
\(27\) |
\(5.2\) |
\(28\) |
\(5.3\) |
\(29\) |
\(5.4\) |
\(30\) |
\(5.5\) |
\(31\) |
\(5.6\) |
\(32\) |
\(5.7\) |
\(33\) |
\(5.7\) |
\(34\) |
\(5.8\) |
\(35\) |
\(5.9\) |
\(36\) |
\(6.0\) |
\(37\) |
\(6.1\) |
\(38\) |
\(6.2\) |
\(39\) |
\(6.2\) |
\(40\) |
\(6.3\) |
\(41\) |
\(6.4\) |
\(42\) |
\(6.5\) |
\(43\) |
\(6.6\) |
\(44\) |
\(6.6\) |
\(45\) |
\(6.7\) |
\(46\) |
\(6.8\) |
\(47\) |
\(6.9\) |
\(48\) |
\(6.9\) |
\(49\) |
\(7.0\) |
\(50\) |
\(7.1\) |
\(51\) |
\(7.1\) |
\(52\) |
\(7.2\) |
\(53\) |
\(7.3\) |
\(54\) |
\(7.3\) |
\(55\) |
\(7.4\) |
\(56\) |
\(7.5\) |
\(57\) |
\(7.5\) |
\(58\) |
\(7.6\) |
\(59\) |
\(7.7\) |
\(60\) |
\(7.7\) |
\(61\) |
\(7.8\) |
\(62\) |
\(7.9\) |
\(63\) |
\(7.9\) |
\(64\) |
\(8.0\) |
\(65\) |
\(8.1\) |
\(66\) |
\(8.1\) |
\(67\) |
\(8.2\) |
\(68\) |
\(8.2\) |
\(69\) |
\(8.3\) |
\(70\) |
\(8.4\) |
\(71\) |
\(8.4\) |
\(72\) |
\(8.5\) |
\(73\) |
\(8.5\) |
\(74\) |
\(8.6\) |
\(75\) |
\(8.7\) |
\(76\) |
\(8.7\) |
\(77\) |
\(8.8\) |
\(78\) |
\(8.8\) |
\(79\) |
\(8.9\) |
\(80\) |
\(8.9\) |
\(81\) |
\(9.0\) |
\(82\) |
\(9.1\) |
\(83\) |
\(9.1\) |
\(84\) |
\(9.2\) |
\(85\) |
\(9.2\) |
\(86\) |
\(9.3\) |
\(87\) |
\(9.3\) |
\(88\) |
\(9.4\) |
\(89\) |
\(9.4\) |
\(90\) |
\(9.5\) |
\(91\) |
\(9.5\) |
\(92\) |
\(9.6\) |
\(93\) |
\(9.6\) |
\(94\) |
\(9.7\) |
\(95\) |
\(9.7\) |
\(96\) |
\(9.8\) |
\(97\) |
\(9.8\) |
\(98\) |
\(9.9\) |
\(99\) |
\(9.9\) |
\(100\) |
\(10.0\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-2}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.00\) |
\(2\) |
\(1.41\) |
\(3\) |
\(1.73\) |
\(4\) |
\(2.00\) |
\(5\) |
\(2.24\) |
\(6\) |
\(2.45\) |
\(7\) |
\(2.65\) |
\(8\) |
\(2.83\) |
\(9\) |
\(3.00\) |
\(10\) |
\(3.16\) |
\(11\) |
\(3.32\) |
\(12\) |
\(3.46\) |
\(13\) |
\(3.61\) |
\(14\) |
\(3.74\) |
\(15\) |
\(3.87\) |
\(16\) |
\(4.00\) |
\(17\) |
\(4.12\) |
\(18\) |
\(4.24\) |
\(19\) |
\(4.36\) |
\(20\) |
\(4.47\) |
\(21\) |
\(4.58\) |
\(22\) |
\(4.69\) |
\(23\) |
\(4.80\) |
\(24\) |
\(4.90\) |
\(25\) |
\(5.00\) |
\(26\) |
\(5.10\) |
\(27\) |
\(5.20\) |
\(28\) |
\(5.29\) |
\(29\) |
\(5.39\) |
\(30\) |
\(5.48\) |
\(31\) |
\(5.57\) |
\(32\) |
\(5.66\) |
\(33\) |
\(5.74\) |
\(34\) |
\(5.83\) |
\(35\) |
\(5.92\) |
\(36\) |
\(6.00\) |
\(37\) |
\(6.08\) |
\(38\) |
\(6.16\) |
\(39\) |
\(6.24\) |
\(40\) |
\(6.32\) |
\(41\) |
\(6.40\) |
\(42\) |
\(6.48\) |
\(43\) |
\(6.56\) |
\(44\) |
\(6.63\) |
\(45\) |
\(6.71\) |
\(46\) |
\(6.78\) |
\(47\) |
\(6.86\) |
\(48\) |
\(6.93\) |
\(49\) |
\(7.00\) |
\(50\) |
\(7.07\) |
\(51\) |
\(7.14\) |
\(52\) |
\(7.21\) |
\(53\) |
\(7.28\) |
\(54\) |
\(7.35\) |
\(55\) |
\(7.42\) |
\(56\) |
\(7.48\) |
\(57\) |
\(7.55\) |
\(58\) |
\(7.62\) |
\(59\) |
\(7.68\) |
\(60\) |
\(7.75\) |
\(61\) |
\(7.81\) |
\(62\) |
\(7.87\) |
\(63\) |
\(7.94\) |
\(64\) |
\(8.00\) |
\(65\) |
\(8.06\) |
\(66\) |
\(8.12\) |
\(67\) |
\(8.19\) |
\(68\) |
\(8.25\) |
\(69\) |
\(8.31\) |
\(70\) |
\(8.37\) |
\(71\) |
\(8.43\) |
\(72\) |
\(8.49\) |
\(73\) |
\(8.54\) |
\(74\) |
\(8.60\) |
\(75\) |
\(8.66\) |
\(76\) |
\(8.72\) |
\(77\) |
\(8.77\) |
\(78\) |
\(8.83\) |
\(79\) |
\(8.89\) |
\(80\) |
\(8.94\) |
\(81\) |
\(9.00\) |
\(82\) |
\(9.06\) |
\(83\) |
\(9.11\) |
\(84\) |
\(9.17\) |
\(85\) |
\(9.22\) |
\(86\) |
\(9.27\) |
\(87\) |
\(9.33\) |
\(88\) |
\(9.38\) |
\(89\) |
\(9.43\) |
\(90\) |
\(9.49\) |
\(91\) |
\(9.54\) |
\(92\) |
\(9.59\) |
\(93\) |
\(9.64\) |
\(94\) |
\(9.70\) |
\(95\) |
\(9.75\) |
\(96\) |
\(9.80\) |
\(97\) |
\(9.85\) |
\(98\) |
\(9.90\) |
\(99\) |
\(9.95\) |
\(100\) |
\(10.00\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-3}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.000\) |
\(2\) |
\(1.414\) |
\(3\) |
\(1.732\) |
\(4\) |
\(2.000\) |
\(5\) |
\(2.236\) |
\(6\) |
\(2.449\) |
\(7\) |
\(2.646\) |
\(8\) |
\(2.828\) |
\(9\) |
\(3.000\) |
\(10\) |
\(3.162\) |
\(11\) |
\(3.317\) |
\(12\) |
\(3.464\) |
\(13\) |
\(3.606\) |
\(14\) |
\(3.742\) |
\(15\) |
\(3.873\) |
\(16\) |
\(4.000\) |
\(17\) |
\(4.123\) |
\(18\) |
\(4.243\) |
\(19\) |
\(4.359\) |
\(20\) |
\(4.472\) |
\(21\) |
\(4.583\) |
\(22\) |
\(4.690\) |
\(23\) |
\(4.796\) |
\(24\) |
\(4.899\) |
\(25\) |
\(5.000\) |
\(26\) |
\(5.099\) |
\(27\) |
\(5.196\) |
\(28\) |
\(5.292\) |
\(29\) |
\(5.385\) |
\(30\) |
\(5.477\) |
\(31\) |
\(5.568\) |
\(32\) |
\(5.657\) |
\(33\) |
\(5.745\) |
\(34\) |
\(5.831\) |
\(35\) |
\(5.916\) |
\(36\) |
\(6.000\) |
\(37\) |
\(6.083\) |
\(38\) |
\(6.164\) |
\(39\) |
\(6.245\) |
\(40\) |
\(6.325\) |
\(41\) |
\(6.403\) |
\(42\) |
\(6.481\) |
\(43\) |
\(6.557\) |
\(44\) |
\(6.633\) |
\(45\) |
\(6.708\) |
\(46\) |
\(6.782\) |
\(47\) |
\(6.856\) |
\(48\) |
\(6.928\) |
\(49\) |
\(7.000\) |
\(50\) |
\(7.071\) |
\(51\) |
\(7.141\) |
\(52\) |
\(7.211\) |
\(53\) |
\(7.280\) |
\(54\) |
\(7.348\) |
\(55\) |
\(7.416\) |
\(56\) |
\(7.483\) |
\(57\) |
\(7.550\) |
\(58\) |
\(7.616\) |
\(59\) |
\(7.681\) |
\(60\) |
\(7.746\) |
\(61\) |
\(7.810\) |
\(62\) |
\(7.874\) |
\(63\) |
\(7.937\) |
\(64\) |
\(8.000\) |
\(65\) |
\(8.062\) |
\(66\) |
\(8.124\) |
\(67\) |
\(8.185\) |
\(68\) |
\(8.246\) |
\(69\) |
\(8.307\) |
\(70\) |
\(8.367\) |
\(71\) |
\(8.426\) |
\(72\) |
\(8.485\) |
\(73\) |
\(8.544\) |
\(74\) |
\(8.602\) |
\(75\) |
\(8.660\) |
\(76\) |
\(8.718\) |
\(77\) |
\(8.775\) |
\(78\) |
\(8.832\) |
\(79\) |
\(8.888\) |
\(80\) |
\(8.944\) |
\(81\) |
\(9.000\) |
\(82\) |
\(9.055\) |
\(83\) |
\(9.110\) |
\(84\) |
\(9.165\) |
\(85\) |
\(9.220\) |
\(86\) |
\(9.274\) |
\(87\) |
\(9.327\) |
\(88\) |
\(9.381\) |
\(89\) |
\(9.434\) |
\(90\) |
\(9.487\) |
\(91\) |
\(9.539\) |
\(92\) |
\(9.592\) |
\(93\) |
\(9.644\) |
\(94\) |
\(9.695\) |
\(95\) |
\(9.747\) |
\(96\) |
\(9.798\) |
\(97\) |
\(9.849\) |
\(98\) |
\(9.899\) |
\(99\) |
\(9.950\) |
\(100\) |
\(10.000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-4}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.0000\) |
\(2\) |
\(1.4142\) |
\(3\) |
\(1.7321\) |
\(4\) |
\(2.0000\) |
\(5\) |
\(2.2361\) |
\(6\) |
\(2.4495\) |
\(7\) |
\(2.6458\) |
\(8\) |
\(2.8284\) |
\(9\) |
\(3.0000\) |
\(10\) |
\(3.1623\) |
\(11\) |
\(3.3166\) |
\(12\) |
\(3.4641\) |
\(13\) |
\(3.6056\) |
\(14\) |
\(3.7417\) |
\(15\) |
\(3.8730\) |
\(16\) |
\(4.0000\) |
\(17\) |
\(4.1231\) |
\(18\) |
\(4.2426\) |
\(19\) |
\(4.3589\) |
\(20\) |
\(4.4721\) |
\(21\) |
\(4.5826\) |
\(22\) |
\(4.6904\) |
\(23\) |
\(4.7958\) |
\(24\) |
\(4.8990\) |
\(25\) |
\(5.0000\) |
\(26\) |
\(5.0990\) |
\(27\) |
\(5.1962\) |
\(28\) |
\(5.2915\) |
\(29\) |
\(5.3852\) |
\(30\) |
\(5.4772\) |
\(31\) |
\(5.5678\) |
\(32\) |
\(5.6569\) |
\(33\) |
\(5.7446\) |
\(34\) |
\(5.8310\) |
\(35\) |
\(5.9161\) |
\(36\) |
\(6.0000\) |
\(37\) |
\(6.0828\) |
\(38\) |
\(6.1644\) |
\(39\) |
\(6.2450\) |
\(40\) |
\(6.3246\) |
\(41\) |
\(6.4031\) |
\(42\) |
\(6.4807\) |
\(43\) |
\(6.5574\) |
\(44\) |
\(6.6332\) |
\(45\) |
\(6.7082\) |
\(46\) |
\(6.7823\) |
\(47\) |
\(6.8557\) |
\(48\) |
\(6.9282\) |
\(49\) |
\(7.0000\) |
\(50\) |
\(7.0711\) |
\(51\) |
\(7.1414\) |
\(52\) |
\(7.2111\) |
\(53\) |
\(7.2801\) |
\(54\) |
\(7.3485\) |
\(55\) |
\(7.4162\) |
\(56\) |
\(7.4833\) |
\(57\) |
\(7.5498\) |
\(58\) |
\(7.6158\) |
\(59\) |
\(7.6811\) |
\(60\) |
\(7.7460\) |
\(61\) |
\(7.8102\) |
\(62\) |
\(7.8740\) |
\(63\) |
\(7.9373\) |
\(64\) |
\(8.0000\) |
\(65\) |
\(8.0623\) |
\(66\) |
\(8.1240\) |
\(67\) |
\(8.1854\) |
\(68\) |
\(8.2462\) |
\(69\) |
\(8.3066\) |
\(70\) |
\(8.3666\) |
\(71\) |
\(8.4261\) |
\(72\) |
\(8.4853\) |
\(73\) |
\(8.5440\) |
\(74\) |
\(8.6023\) |
\(75\) |
\(8.6603\) |
\(76\) |
\(8.7178\) |
\(77\) |
\(8.7750\) |
\(78\) |
\(8.8318\) |
\(79\) |
\(8.8882\) |
\(80\) |
\(8.9443\) |
\(81\) |
\(9.0000\) |
\(82\) |
\(9.0554\) |
\(83\) |
\(9.1104\) |
\(84\) |
\(9.1652\) |
\(85\) |
\(9.2195\) |
\(86\) |
\(9.2736\) |
\(87\) |
\(9.3274\) |
\(88\) |
\(9.3808\) |
\(89\) |
\(9.4340\) |
\(90\) |
\(9.4868\) |
\(91\) |
\(9.5394\) |
\(92\) |
\(9.5917\) |
\(93\) |
\(9.6437\) |
\(94\) |
\(9.6954\) |
\(95\) |
\(9.7468\) |
\(96\) |
\(9.7980\) |
\(97\) |
\(9.8489\) |
\(98\) |
\(9.8995\) |
\(99\) |
\(9.9499\) |
\(100\) |
\(10.0000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-5}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.00000\) |
\(2\) |
\(1.41421\) |
\(3\) |
\(1.73205\) |
\(4\) |
\(2.00000\) |
\(5\) |
\(2.23607\) |
\(6\) |
\(2.44949\) |
\(7\) |
\(2.64575\) |
\(8\) |
\(2.82843\) |
\(9\) |
\(3.00000\) |
\(10\) |
\(3.16228\) |
\(11\) |
\(3.31662\) |
\(12\) |
\(3.46410\) |
\(13\) |
\(3.60555\) |
\(14\) |
\(3.74166\) |
\(15\) |
\(3.87298\) |
\(16\) |
\(4.00000\) |
\(17\) |
\(4.12311\) |
\(18\) |
\(4.24264\) |
\(19\) |
\(4.35890\) |
\(20\) |
\(4.47214\) |
\(21\) |
\(4.58258\) |
\(22\) |
\(4.69042\) |
\(23\) |
\(4.79583\) |
\(24\) |
\(4.89898\) |
\(25\) |
\(5.00000\) |
\(26\) |
\(5.09902\) |
\(27\) |
\(5.19615\) |
\(28\) |
\(5.29150\) |
\(29\) |
\(5.38516\) |
\(30\) |
\(5.47723\) |
\(31\) |
\(5.56776\) |
\(32\) |
\(5.65685\) |
\(33\) |
\(5.74456\) |
\(34\) |
\(5.83095\) |
\(35\) |
\(5.91608\) |
\(36\) |
\(6.00000\) |
\(37\) |
\(6.08276\) |
\(38\) |
\(6.16441\) |
\(39\) |
\(6.24500\) |
\(40\) |
\(6.32456\) |
\(41\) |
\(6.40312\) |
\(42\) |
\(6.48074\) |
\(43\) |
\(6.55744\) |
\(44\) |
\(6.63325\) |
\(45\) |
\(6.70820\) |
\(46\) |
\(6.78233\) |
\(47\) |
\(6.85565\) |
\(48\) |
\(6.92820\) |
\(49\) |
\(7.00000\) |
\(50\) |
\(7.07107\) |
\(51\) |
\(7.14143\) |
\(52\) |
\(7.21110\) |
\(53\) |
\(7.28011\) |
\(54\) |
\(7.34847\) |
\(55\) |
\(7.41620\) |
\(56\) |
\(7.48331\) |
\(57\) |
\(7.54983\) |
\(58\) |
\(7.61577\) |
\(59\) |
\(7.68115\) |
\(60\) |
\(7.74597\) |
\(61\) |
\(7.81025\) |
\(62\) |
\(7.87401\) |
\(63\) |
\(7.93725\) |
\(64\) |
\(8.00000\) |
\(65\) |
\(8.06226\) |
\(66\) |
\(8.12404\) |
\(67\) |
\(8.18535\) |
\(68\) |
\(8.24621\) |
\(69\) |
\(8.30662\) |
\(70\) |
\(8.36660\) |
\(71\) |
\(8.42615\) |
\(72\) |
\(8.48528\) |
\(73\) |
\(8.54400\) |
\(74\) |
\(8.60233\) |
\(75\) |
\(8.66025\) |
\(76\) |
\(8.71780\) |
\(77\) |
\(8.77496\) |
\(78\) |
\(8.83176\) |
\(79\) |
\(8.88819\) |
\(80\) |
\(8.94427\) |
\(81\) |
\(9.00000\) |
\(82\) |
\(9.05539\) |
\(83\) |
\(9.11043\) |
\(84\) |
\(9.16515\) |
\(85\) |
\(9.21954\) |
\(86\) |
\(9.27362\) |
\(87\) |
\(9.32738\) |
\(88\) |
\(9.38083\) |
\(89\) |
\(9.43398\) |
\(90\) |
\(9.48683\) |
\(91\) |
\(9.53939\) |
\(92\) |
\(9.59166\) |
\(93\) |
\(9.64365\) |
\(94\) |
\(9.69536\) |
\(95\) |
\(9.74679\) |
\(96\) |
\(9.79796\) |
\(97\) |
\(9.84886\) |
\(98\) |
\(9.89949\) |
\(99\) |
\(9.94987\) |
\(100\) |
\(10.00000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-6}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.000000\) |
\(2\) |
\(1.414214\) |
\(3\) |
\(1.732051\) |
\(4\) |
\(2.000000\) |
\(5\) |
\(2.236068\) |
\(6\) |
\(2.449490\) |
\(7\) |
\(2.645751\) |
\(8\) |
\(2.828427\) |
\(9\) |
\(3.000000\) |
\(10\) |
\(3.162278\) |
\(11\) |
\(3.316625\) |
\(12\) |
\(3.464102\) |
\(13\) |
\(3.605551\) |
\(14\) |
\(3.741657\) |
\(15\) |
\(3.872983\) |
\(16\) |
\(4.000000\) |
\(17\) |
\(4.123106\) |
\(18\) |
\(4.242641\) |
\(19\) |
\(4.358899\) |
\(20\) |
\(4.472136\) |
\(21\) |
\(4.582576\) |
\(22\) |
\(4.690416\) |
\(23\) |
\(4.795832\) |
\(24\) |
\(4.898979\) |
\(25\) |
\(5.000000\) |
\(26\) |
\(5.099020\) |
\(27\) |
\(5.196152\) |
\(28\) |
\(5.291503\) |
\(29\) |
\(5.385165\) |
\(30\) |
\(5.477226\) |
\(31\) |
\(5.567764\) |
\(32\) |
\(5.656854\) |
\(33\) |
\(5.744563\) |
\(34\) |
\(5.830952\) |
\(35\) |
\(5.916080\) |
\(36\) |
\(6.000000\) |
\(37\) |
\(6.082763\) |
\(38\) |
\(6.164414\) |
\(39\) |
\(6.244998\) |
\(40\) |
\(6.324555\) |
\(41\) |
\(6.403124\) |
\(42\) |
\(6.480741\) |
\(43\) |
\(6.557439\) |
\(44\) |
\(6.633250\) |
\(45\) |
\(6.708204\) |
\(46\) |
\(6.782330\) |
\(47\) |
\(6.855655\) |
\(48\) |
\(6.928203\) |
\(49\) |
\(7.000000\) |
\(50\) |
\(7.071068\) |
\(51\) |
\(7.141428\) |
\(52\) |
\(7.211103\) |
\(53\) |
\(7.280110\) |
\(54\) |
\(7.348469\) |
\(55\) |
\(7.416198\) |
\(56\) |
\(7.483315\) |
\(57\) |
\(7.549834\) |
\(58\) |
\(7.615773\) |
\(59\) |
\(7.681146\) |
\(60\) |
\(7.745967\) |
\(61\) |
\(7.810250\) |
\(62\) |
\(7.874008\) |
\(63\) |
\(7.937254\) |
\(64\) |
\(8.000000\) |
\(65\) |
\(8.062258\) |
\(66\) |
\(8.124038\) |
\(67\) |
\(8.185353\) |
\(68\) |
\(8.246211\) |
\(69\) |
\(8.306624\) |
\(70\) |
\(8.366600\) |
\(71\) |
\(8.426150\) |
\(72\) |
\(8.485281\) |
\(73\) |
\(8.544004\) |
\(74\) |
\(8.602325\) |
\(75\) |
\(8.660254\) |
\(76\) |
\(8.717798\) |
\(77\) |
\(8.774964\) |
\(78\) |
\(8.831761\) |
\(79\) |
\(8.888194\) |
\(80\) |
\(8.944272\) |
\(81\) |
\(9.000000\) |
\(82\) |
\(9.055385\) |
\(83\) |
\(9.110434\) |
\(84\) |
\(9.165151\) |
\(85\) |
\(9.219544\) |
\(86\) |
\(9.273618\) |
\(87\) |
\(9.327379\) |
\(88\) |
\(9.380832\) |
\(89\) |
\(9.433981\) |
\(90\) |
\(9.486833\) |
\(91\) |
\(9.539392\) |
\(92\) |
\(9.591663\) |
\(93\) |
\(9.643651\) |
\(94\) |
\(9.695360\) |
\(95\) |
\(9.746794\) |
\(96\) |
\(9.797959\) |
\(97\) |
\(9.848858\) |
\(98\) |
\(9.899495\) |
\(99\) |
\(9.949874\) |
\(100\) |
\(10.000000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-7}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.0000000\) |
\(2\) |
\(1.4142136\) |
\(3\) |
\(1.7320508\) |
\(4\) |
\(2.0000000\) |
\(5\) |
\(2.2360680\) |
\(6\) |
\(2.4494897\) |
\(7\) |
\(2.6457513\) |
\(8\) |
\(2.8284271\) |
\(9\) |
\(3.0000000\) |
\(10\) |
\(3.1622777\) |
\(11\) |
\(3.3166248\) |
\(12\) |
\(3.4641016\) |
\(13\) |
\(3.6055513\) |
\(14\) |
\(3.7416574\) |
\(15\) |
\(3.8729833\) |
\(16\) |
\(4.0000000\) |
\(17\) |
\(4.1231056\) |
\(18\) |
\(4.2426407\) |
\(19\) |
\(4.3588989\) |
\(20\) |
\(4.4721360\) |
\(21\) |
\(4.5825757\) |
\(22\) |
\(4.6904158\) |
\(23\) |
\(4.7958315\) |
\(24\) |
\(4.8989795\) |
\(25\) |
\(5.0000000\) |
\(26\) |
\(5.0990195\) |
\(27\) |
\(5.1961524\) |
\(28\) |
\(5.2915026\) |
\(29\) |
\(5.3851648\) |
\(30\) |
\(5.4772256\) |
\(31\) |
\(5.5677644\) |
\(32\) |
\(5.6568542\) |
\(33\) |
\(5.7445626\) |
\(34\) |
\(5.8309519\) |
\(35\) |
\(5.9160798\) |
\(36\) |
\(6.0000000\) |
\(37\) |
\(6.0827625\) |
\(38\) |
\(6.1644140\) |
\(39\) |
\(6.2449980\) |
\(40\) |
\(6.3245553\) |
\(41\) |
\(6.4031242\) |
\(42\) |
\(6.4807407\) |
\(43\) |
\(6.5574385\) |
\(44\) |
\(6.6332496\) |
\(45\) |
\(6.7082039\) |
\(46\) |
\(6.7823300\) |
\(47\) |
\(6.8556546\) |
\(48\) |
\(6.9282032\) |
\(49\) |
\(7.0000000\) |
\(50\) |
\(7.0710678\) |
\(51\) |
\(7.1414284\) |
\(52\) |
\(7.2111026\) |
\(53\) |
\(7.2801099\) |
\(54\) |
\(7.3484692\) |
\(55\) |
\(7.4161985\) |
\(56\) |
\(7.4833148\) |
\(57\) |
\(7.5498344\) |
\(58\) |
\(7.6157731\) |
\(59\) |
\(7.6811457\) |
\(60\) |
\(7.7459667\) |
\(61\) |
\(7.8102497\) |
\(62\) |
\(7.8740079\) |
\(63\) |
\(7.9372539\) |
\(64\) |
\(8.0000000\) |
\(65\) |
\(8.0622577\) |
\(66\) |
\(8.1240384\) |
\(67\) |
\(8.1853528\) |
\(68\) |
\(8.2462113\) |
\(69\) |
\(8.3066239\) |
\(70\) |
\(8.3666003\) |
\(71\) |
\(8.4261498\) |
\(72\) |
\(8.4852814\) |
\(73\) |
\(8.5440037\) |
\(74\) |
\(8.6023253\) |
\(75\) |
\(8.6602540\) |
\(76\) |
\(8.7177979\) |
\(77\) |
\(8.7749644\) |
\(78\) |
\(8.8317609\) |
\(79\) |
\(8.8881944\) |
\(80\) |
\(8.9442719\) |
\(81\) |
\(9.0000000\) |
\(82\) |
\(9.0553851\) |
\(83\) |
\(9.1104336\) |
\(84\) |
\(9.1651514\) |
\(85\) |
\(9.2195445\) |
\(86\) |
\(9.2736185\) |
\(87\) |
\(9.3273791\) |
\(88\) |
\(9.3808315\) |
\(89\) |
\(9.4339811\) |
\(90\) |
\(9.4868330\) |
\(91\) |
\(9.5393920\) |
\(92\) |
\(9.5916630\) |
\(93\) |
\(9.6436508\) |
\(94\) |
\(9.6953597\) |
\(95\) |
\(9.7467943\) |
\(96\) |
\(9.7979590\) |
\(97\) |
\(9.8488578\) |
\(98\) |
\(9.8994949\) |
\(99\) |
\(9.9498744\) |
\(100\) |
\(10.0000000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-8}\))
\(n\) |
\(\sqrt{n}\) |
\(1\) |
\(1.00000000\) |
\(2\) |
\(1.41421356\) |
\(3\) |
\(1.73205081\) |
\(4\) |
\(2.00000000\) |
\(5\) |
\(2.23606798\) |
\(6\) |
\(2.44948974\) |
\(7\) |
\(2.64575131\) |
\(8\) |
\(2.82842712\) |
\(9\) |
\(3.00000000\) |
\(10\) |
\(3.16227766\) |
\(11\) |
\(3.31662479\) |
\(12\) |
\(3.46410162\) |
\(13\) |
\(3.60555128\) |
\(14\) |
\(3.74165739\) |
\(15\) |
\(3.87298335\) |
\(16\) |
\(4.00000000\) |
\(17\) |
\(4.12310563\) |
\(18\) |
\(4.24264069\) |
\(19\) |
\(4.35889894\) |
\(20\) |
\(4.47213595\) |
\(21\) |
\(4.58257569\) |
\(22\) |
\(4.69041576\) |
\(23\) |
\(4.79583152\) |
\(24\) |
\(4.89897949\) |
\(25\) |
\(5.00000000\) |
\(26\) |
\(5.09901951\) |
\(27\) |
\(5.19615242\) |
\(28\) |
\(5.29150262\) |
\(29\) |
\(5.38516481\) |
\(30\) |
\(5.47722558\) |
\(31\) |
\(5.56776436\) |
\(32\) |
\(5.65685425\) |
\(33\) |
\(5.74456265\) |
\(34\) |
\(5.83095189\) |
\(35\) |
\(5.91607978\) |
\(36\) |
\(6.00000000\) |
\(37\) |
\(6.08276253\) |
\(38\) |
\(6.16441400\) |
\(39\) |
\(6.24499800\) |
\(40\) |
\(6.32455532\) |
\(41\) |
\(6.40312424\) |
\(42\) |
\(6.48074070\) |
\(43\) |
\(6.55743852\) |
\(44\) |
\(6.63324958\) |
\(45\) |
\(6.70820393\) |
\(46\) |
\(6.78232998\) |
\(47\) |
\(6.85565460\) |
\(48\) |
\(6.92820323\) |
\(49\) |
\(7.00000000\) |
\(50\) |
\(7.07106781\) |
\(51\) |
\(7.14142843\) |
\(52\) |
\(7.21110255\) |
\(53\) |
\(7.28010989\) |
\(54\) |
\(7.34846923\) |
\(55\) |
\(7.41619849\) |
\(56\) |
\(7.48331477\) |
\(57\) |
\(7.54983444\) |
\(58\) |
\(7.61577311\) |
\(59\) |
\(7.68114575\) |
\(60\) |
\(7.74596669\) |
\(61\) |
\(7.81024968\) |
\(62\) |
\(7.87400787\) |
\(63\) |
\(7.93725393\) |
\(64\) |
\(8.00000000\) |
\(65\) |
\(8.06225775\) |
\(66\) |
\(8.12403840\) |
\(67\) |
\(8.18535277\) |
\(68\) |
\(8.24621125\) |
\(69\) |
\(8.30662386\) |
\(70\) |
\(8.36660027\) |
\(71\) |
\(8.42614977\) |
\(72\) |
\(8.48528137\) |
\(73\) |
\(8.54400375\) |
\(74\) |
\(8.60232527\) |
\(75\) |
\(8.66025404\) |
\(76\) |
\(8.71779789\) |
\(77\) |
\(8.77496439\) |
\(78\) |
\(8.83176087\) |
\(79\) |
\(8.88819442\) |
\(80\) |
\(8.94427191\) |
\(81\) |
\(9.00000000\) |
\(82\) |
\(9.05538514\) |
\(83\) |
\(9.11043358\) |
\(84\) |
\(9.16515139\) |
\(85\) |
\(9.21954446\) |
\(86\) |
\(9.27361850\) |
\(87\) |
\(9.32737905\) |
\(88\) |
\(9.38083152\) |
\(89\) |
\(9.43398113\) |
\(90\) |
\(9.48683298\) |
\(91\) |
\(9.53939201\) |
\(92\) |
\(9.59166305\) |
\(93\) |
\(9.64365076\) |
\(94\) |
\(9.69535971\) |
\(95\) |
\(9.74679434\) |
\(96\) |
\(9.79795897\) |
\(97\) |
\(9.84885780\) |
\(98\) |
\(9.89949494\) |
\(99\) |
\(9.94987437\) |
\(100\) |
\(10.00000000\) |
标签:10,
平方,
25,
36,
64,
100,
立方,
根号
From: https://www.cnblogs.com/bc2qwq/p/pow2pow3sqrtdabiao.html