首页 > 其他分享 >Groceries in Meteor Town 题解

Groceries in Meteor Town 题解

时间:2023-11-06 18:15:13浏览次数:38  
标签:Town int 题解 top dfs son dep Groceries include

Groceries in Meteor Town

题目大意

维护一颗带权树,支持以下操作:

  • 将 \([l,r]\) 内的点变为白色。

  • 将 \([l,r]\) 内的点变为黑色。

  • 查询点 \(x\) 到任意一个白色节点的简单路径上的最大值。

思路分析

没事干了把以前的题拿出来写题解。

看到『简单路径上的最大值』的字样首先想到 Kruskal 重构树。

我们先把这颗树的 Kruskal 重构树建出来,那么 \(x\) 到任意一个白色节点的简单路径上的最大值就等于 \(x\) 和所有白色节点的 LCA 的权值。

也就是说,我们只需要支持查询所有的白点的 LCA 就行了。


有一个结论:一堆点的 LCA 等于其中 dfs 序最小的点和 dfs 序最大的点的 LCA。

证明是容易的:

dfs 序所对应的子树区间只存在包含关系,不存在相交关系。

考虑三个点 \(a,b,c\) 的情况,不妨设 \(\text{dfn}_a <\text{dfn}_b<\text{dfn}_c\),这三点的 LCA 对应的 dfs 序区间恰好包含 \(a,b,c\) 对应的 dfs 序区间,又因为 \(b\) 对应的 dfs 序区间位于 \(a,c\) 中间,故只要包含了 \(a,c\) 对应的区间就一定包含了 \(b\)。即 \(\text{LCA}(a,b,c)=\text{LCA}(a,c)\)。

更多点的情况类似。


那么我们只需要维护所有白色点的 dfs 序最值即最值所在位置就可以求出所有白点的 LCA,这可以用线段树简单实现。

具体的说,我们的线段树需要支持以下操作:

  • 查询 dfs 序 最大 / 最小 的白点编号。

  • 区间修改点的颜色。

这两个操作是容易做到的。

那么这题就做完了。

代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>

using namespace std;
const int N = 600600;
#define inf 0x3f3f3f3f
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)

int n, m, op, in1, in2, in3, cnt, rt;
int val[N], fat[N], siz[N], dep[N], top[N], dfn[N], son[N], fa[N];

struct Edge{
    int u, v, w;
}e[N];

struct STn{
    int minn, minp;
    int maxn, maxp;
    int tag;
};
struct ST{
    STn a[N << 2], b[N << 2];
    STn merge(STn p, STn a, STn b){
        p.minn = min(a.minn, b.minn);
        p.maxn = max(a.maxn, b.maxn);
        p.minp = (p.minn == a.minn ? a.minp : b.minp);
        p.maxp = (p.maxn == a.maxn ? a.maxp : b.maxp);
        return p;
    }
    void build(int p, int l, int r){
        if (l == r) {
            a[p].minn = a[p].maxn = dfn[l];
            a[p].minp = a[p].maxp = l;
            b[p] = a[p];
            return ;
        }
        build(ls, l, mid); build(rs, mid + 1, r);
        a[p] = merge(a[p], a[ls], a[rs]);
        b[p] = a[p];
    }
    void change_t(int p, int k){
        if (k == 0) a[p] = b[p];
        else a[p] = STn{inf, inf, -inf, -inf, 1};
    }
    void push_down(int p){
        if (a[p].tag == -1) return ;
        change_t(ls, a[p].tag);
        change_t(rs, a[p].tag);
        a[p].tag = -1;
    }
    void change(int p, int l, int r, int x, int y, int k){
        if (x <= l && r <= y) return change_t(p, k);
        push_down(p);
        if (x <= mid) change(ls, l, mid, x, y, k);
        if (y > mid) change(rs, mid + 1, r, x, y, k);
        a[p] = merge(a[p], a[ls], a[rs]);
    }
}tree;

vector <int> to[N];

int find(int x){
    return fat[x] == x ? x : fat[x] = find(fat[x]); 
}

void dfs_1(int s, int gr){
    fa[s] = gr; siz[s] = 1;
    dep[s] = dep[gr] + 1;
    for (auto v : to[s]) {
        dfs_1(v, s);
        siz[s] += siz[v];
        if (siz[son[s]] < siz[v]) son[s] = v;
    }
}

void dfs_2(int s, int tp){
    top[s] = tp; dfn[s] = ++ cnt;
    if (!son[s]) return ;
    dfs_2(son[s], tp);
    for (auto v : to[s])    
        if (v != fa[s] && v != son[s]) dfs_2(v, v);
}

int lca(int x, int y){
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        x = fa[top[x]];
    }
    return dep[x] > dep[y] ? y : x;
}

int main(){
    scanf("%d %d", &n, &m); rt = 2 * n - 1;
    for (int i = 1; i <= 2 * n; i ++) fat[i] = i;
    for (int i = 1; i < n; i ++) {
        scanf("%d %d %d", &in1, &in2, &in3);
        e[i] = Edge{in1, in2, in3};
    }
    sort(e + 1, e + n, [](Edge a, Edge b){return a.w < b.w;});
    for (int i = 1; i < n; i ++) {
        to[i + n].push_back(find(e[i].u));
        to[i + n].push_back(find(e[i].v));
        val[i + n] = e[i].w;
        fat[find(e[i].u)] = fat[find(e[i].v)] = find(i + n);
    }
    dfs_1(rt, 0); dfs_2(rt, rt);
    tree.build(1, 1, rt);
    tree.change_t(1, 1);
    while (m --) {
        scanf("%d", &op);
        if (op == 1) {
            scanf("%d %d", &in1, &in2);
            tree.change(1, 1, rt, in1, in2, 0);
        }
        if (op == 2) {
            scanf("%d %d", &in1, &in2);
            tree.change(1, 1, rt, in1, in2, 1);
        }
        if (op == 3) {
            scanf("%d", &in1);
            STn res = tree.a[1];
            if (res.minn == inf) {cout << "-1\n"; continue;}
            int l = lca(res.minp, res.maxp);
            if (in1 == l) {cout << "-1\n"; continue;}
            cout << val[lca(in1, lca(res.minp, res.maxp))] << '\n';
        }
    }
    return 0;
}

标签:Town,int,题解,top,dfs,son,dep,Groceries,include
From: https://www.cnblogs.com/TKXZ133/p/17813343.html

相关文章

  • Harvester 题解
    Harvester题目大意给定\(n\timesm\)的网格,每次可以选一行或一列,将这一行或一列上的数全部取走,最多可以取四次,问取走的数的和的最大值。思路分析没事干了把以前写过的题拿出来写题解。分类讨论题。在只能取四次的情况下一共只有这么几种可能:选四行:毫无疑问,行之间互不......
  • 大文件上传 问题解决三种方案
    最近遇见一个需要上传百兆大文件的需求,调研了七牛和腾讯云的切片分段上传功能,因此在此整理前端大文件上传相关功能的实现。在某些业务中,大文件上传是一个比较重要的交互场景,如上传入库比较大的Excel表格数据、上传影音文件等。如果文件体积比较大,或者网络条件不好时,上传的时间会......
  • vue视频直接播放rtsp流;vue视频延迟问题解决;webRTC占cpu太大卡死问题解决;解决webRTC播
    vue视频直接播放rtsp流;vue视频延迟问题解决;webRTC占cpu太大卡死问题解决;解决webRTC播放卡花屏问题::https://blog.csdn.net/killerdoubie/article/details/133884070......
  • 【洛谷 P1046】[NOIP2005 普及组] 陶陶摘苹果 题解(比较)
    [NOIP2005普及组]陶陶摘苹果题目描述陶陶家的院子里有一棵苹果树,每到秋天树上就会结出个苹果。苹果成熟的时候,陶陶就会跑去摘苹果。陶陶有个厘米高的板凳,当她不能直接用手摘到苹果的时候,就会踩到板凳上再试试。现在已知个苹果到地面的高度,以及陶陶把手伸直的时候能够达到的......
  • Linux下内存buff/cache占用过多问题解决
    在Linux下经常会遇到buff/cache内存占用过多问题,如果buff/cache占用过大的,free空闲内存就很少,影响使用;通常内存关系是:普通机器:total=used+free虚拟机器:total=used+free+buff/cache这个时候可以看到buff/cache占用的内存非常大,这个时候可以使用一下命令去清除一下cache内存echo1>......
  • 题解 P6880 [JOI 2020 Final] オリンピックバス
    洛谷。题意应该显然,注意最多只能翻转一条边,并且可以不翻转。分析首先观察数据范围\(2\leN\le200\),\(1\leM\le5\times10^4\),可以发现我们的\(N\)和\(M\)并不是同级的,因此,在众多的最短路算法中,我们应当选择不加堆优化的dijkstra算法,并且使用邻接矩阵,这是\(O(n^2)......
  • 【题解】NOIP2021 - 方差
    NOIP2021-方差https://www.luogu.com.cn/problem/P7962想当年我第一次站在noip赛场上,过了T1剩下三题就一题不会了……幸好这题拿了点分水了个一等。观察操作:若对于连续的三个数\(a,b,c\),对\(b\)进行一次操作后就变成了\(a,a+c-b,c\)。求出两个数组的差分数组:\(b-a,c......
  • 2023联合省选 题解
    目录D1T1P9166[省选联考2023]火车站D1T2P9167[省选联考2023]城市建造D1T3P9168[省选联考2023]人员调度D2T1P9169[省选联考2023]过河卒D2T2P9170[省选联考2023]填数游戏D2T3P9171[省选联考2023]染色数组D1T1P9166[省选联考2023]火车站性质很好找。关......
  • 题解 P6878 [JOI 2020 Final] JJOOII 2
    好久没写题解,水一篇。题意题意显然。分析看到这道题,我们就应该进行一个小贪心,对于最左边某一字符,直到最右边的这一字符,我们不会在中间删除同样的字符,不然则可以保留这一字符,将两边往内缩。也就是说,我们确定了最左边的J后,那么留下最后一个J必然是当前这个J的后面的第\(......
  • ARC_068F Solitaire题解
    非常骚的一道题首先看数据范围就很像dp(而且在dp专题里),尝试直接dp,发现不太行手玩一波样例,发现答案是2的若干次方乘一个系数。我们发现“若干”=n-k-1,这是巧合吗!?思索一番,会发现当我们取完k个数后剩下的n-k个数取法就为2^(n-k-1),为什么呢?可以把每次操作看成“前取“”or......