图像分割测试
Code for Image Segmentation with Distance Transform and Watershed Algorithm
cd
效果如下:
计算 视频帧的 PSNR 、SSIM
这个代码感觉对于 超分重建 PSNR 计算还是有些许参考价值的;
cd
输出大致如下:
Frame: 0# 0dB
Frame: 1# 41.279dB
Frame: 2# 41.354dB
Frame: 3# 41.201dB
Frame: 4# 41.043dB
Frame: 5# 19.214dB MSSISM: R 94.69% G 93.39% B 90.06%
Frame: 6# 40.818dB
Frame: 7# 41.046dB
Frame: 8# 40.919dB
Frame: 9# 41.166dB
Frame: 10# 15.832dB MSSISM: R 93.17% G 91.99% B 88.64%
Frame: 11# 40.767dB
Frame: 12# 41.016dB
Frame: 13# 40.746dB
Frame: 14# 41.186dB
Frame: 15# 40.297dB
Frame: 16# 40.44dB
Frame: 17# 40.97dB
Frame: 18# 40.846dB
Frame: 19# 40.727dB
Frame: 20# 22.09dB MSSISM: R 94.64% G 93.88% B 90.64%
Frame: 21# 40.953dB
Frame: 22# 40.845dB
Frame: 23# 40.894dB
Frame: 24# 40.776dB
Frame: 25# 22.021dB MSSISM: R 93.1% G 91.86% B 89.21%
Frame: 26# 40.067dB
Frame: 27# 39.661dB
Frame: 28# 39.176dB
Frame: 29# 39.289dB
Frame: 30# 21.877dB MSSISM: R 90.4% G 88.64% B 86.24%
Background subtraction method(视频人像跟踪 - 背景提取)
cd
效果如下:
# Background subtraction method (KNN, MOG2)标签:视频,PSNR,SSIM,Frame,dB,如下,OpenCV,MSSISM From: https://blog.51cto.com/u_15660370/5734918
# 算法设置为 KNN 测试如下: