首页 > 其他分享 >《动手学深度学习 Pytorch版》 10.3 注意力评分函数

《动手学深度学习 Pytorch版》 10.3 注意力评分函数

时间:2023-10-24 22:33:47浏览次数:40  
标签:10.3 torch 评分 self boldsymbol lens Pytorch valid attention

上一节使用的高斯核的指数部分可以视为注意力评分函数(attention scoring function),简称评分函数(scoring function)。

后续把评分函数的输出结果输入到softmax函数中进行运算。最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。该过程可描述为下图:

image

用数学语言描述为:

\[f(\boldsymbol{q},(\boldsymbol{k}_1,\boldsymbol{v}_1),\dots,(\boldsymbol{k}_m,\boldsymbol{v}_m))=\sum^m_{i=1}{\alpha(\boldsymbol{q},\boldsymbol{k}_i)\boldsymbol{v}_i}\in\R^v \]

其中查询 \(\boldsymbol{q}\) 和键 \(\boldsymbol{k}_i\) 的注意力权重(标量)是通过注意力评分函数 \(a\) 将两个向量映射成标量,再经过softmax运算得到的:

\[\alpha(\boldsymbol{q},\boldsymbol{k}_i)=\mathrm{softmax}(a(\boldsymbol{q},\boldsymbol{k}_i))=\frac{a(\boldsymbol{q},\boldsymbol{k}_i)}{\sum^m_{j=1}{\exp{a(\boldsymbol{q},\boldsymbol{k}_i)}}}\in\R \]

import math
import torch
from torch import nn
from d2l import torch as d2l

以下介绍的是两个流行的评分函数。

10.3.1 遮蔽 softmax 操作

并非所有的值都应该被纳入到注意力汇聚中。下面的 masked_softmax 函数实现了这样的掩蔽softmax操作(masked softmax operation),其中任何超出有效长度的位置都被掩蔽并置为0。

#@save
def masked_softmax(X, valid_lens):
    """通过在最后一个轴上掩蔽元素来执行softmax操作"""
    # X:3D张量,valid_lens:1D或2D张量
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
        X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)
print(masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3])))  # 两样本有效长度分别为 2 和 3
print(masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]])))  # 也可以给每一行指定有效长度
tensor([[[0.4297, 0.5703, 0.0000, 0.0000],
         [0.6186, 0.3814, 0.0000, 0.0000]],

        [[0.2413, 0.3333, 0.4254, 0.0000],
         [0.4165, 0.2801, 0.3034, 0.0000]]])
tensor([[[1.0000, 0.0000, 0.0000, 0.0000],
         [0.3277, 0.4602, 0.2121, 0.0000]],

        [[0.5026, 0.4974, 0.0000, 0.0000],
         [0.2684, 0.2599, 0.2613, 0.2103]]])

10.3.2 加性注意力

当查询和键是不同长度的矢量时,可以使用加性注意力作为评分函数。加性注意力(additive attention)的评分函数为:

\[a(\boldsymbol{q},\boldsymbol{k}_i)=\boldsymbol{\mathrm{w}}_v^T\tanh{(\boldsymbol{\mathrm{W}}_q\boldsymbol{q}+\boldsymbol{\mathrm{W}}_k\boldsymbol{k})}\in\R \]

参数字典:

  • \(\boldsymbol{q}\in\R^q\) 表示查询

  • \(\boldsymbol{k}\in\R^k\) 表示键

  • \(\boldsymbol{\mathrm{W}}_q\in\R^{h\times q}\)、\(\boldsymbol{\mathrm{W}}_k\in\R^{h\times k}\) 和 \(\boldsymbol{\mathrm{W}}_v\in\R^h\) 均为可学习参数。

#@save
class AdditiveAttention(nn.Module):
    """加性注意力"""
    def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
        super(AdditiveAttention, self).__init__(**kwargs)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
        self.w_v = nn.Linear(num_hiddens, 1, bias=False)
        self.dropout = nn.Dropout(dropout)  # 使用了暂退法进行模型正则化

    def forward(self, queries, keys, values, valid_lens):
        # 初始 q 和 k 的形状如下,不好直接加
        # queries 的形状:(batch_size,查询的个数,num_hidden)
        # key 的形状:(batch_size,“键-值”对的个数,num_hiddens)
        queries, keys = self.W_q(queries), self.W_k(keys)
        # 在维度扩展后,
        # queries 的形状:(batch_size,查询的个数,1,num_hidden)
        # key 的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
        features = queries.unsqueeze(2) + keys.unsqueeze(1)  # 优雅,实在优雅 使用广播方式进行求和
        features = torch.tanh(features)
        # self.w_v 仅有一个输出,因此从形状中移除最后那个维度。
        # scores 的形状:(batch_size,查询的个数,“键-值”对的个数)
        scores = self.w_v(features).squeeze(-1)  # 把最后一个维度去掉
        self.attention_weights = masked_softmax(scores, valid_lens)
        # values的形状:(batch_size,“键-值”对的个数,值的维度)
        return torch.bmm(self.dropout(self.attention_weights), values)
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))  # 查询、键和值的形状为(批量大小,步数或词元序列长度,特征大小)
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(
    2, 1, 1)
valid_lens = torch.tensor([2, 6])

attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,
                              dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)  # 注意力汇聚输出的形状为(批量大小,查询的步数,值的维度)
tensor([[[ 2.0000,  3.0000,  4.0000,  5.0000]],

        [[10.0000, 11.0000, 12.0000, 13.0000]]], grad_fn=<BmmBackward0>)
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),  # 本例子中每个键都是相同的,所以注意力权重是均匀的,由指定的有效长度决定。
                  xlabel='Keys', ylabel='Queries')

image

10.3.3 缩放点积注意力

使用点积可以得到计算效率更高的评分函数,缩放点积注意力(scaled dot-product attention)评分函数为:

\[a(\boldsymbol{q},\boldsymbol{k})=\boldsymbol{q}^T\boldsymbol{k}\sqrt{d} \]

在实践中,我们通常从小批量的角度来考虑提高效率:

\[\mathrm{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^T}{\sqrt{d}}\right)\boldsymbol{V}\in\R^{n\times v} \]

#@save
class DotProductAttention(nn.Module):
    """缩放点积注意力"""
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # queries的形状:(batch_size,查询的个数,d)
    # keys的形状:(batch_size,“键-值”对的个数,d)
    # values的形状:(batch_size,“键-值”对的个数,值的维度)
    # valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        # 设置transpose_b=True为了交换keys的最后两个维度
        scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)
queries = torch.normal(0, 1, (2, 1, 2))  # 点积操作需要查询的特征维度与键的特征维度大小相同
attention = DotProductAttention(dropout=0.5)  # 使用了暂退法进行模型正则化
attention.eval()
attention(queries, keys, values, valid_lens)
tensor([[[ 2.0000,  3.0000,  4.0000,  5.0000]],

        [[10.0000, 11.0000, 12.0000, 13.0000]]])
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')

image

练习

(1)修改小例子中的键,并且可视化注意力权重。可加性注意力和缩放的“点-积”注意力是否仍然产生相同的结果?为什么?

不一样,评分函数不一样,键值不同的话那注意力汇聚肯定不一样的。

queries_new, keys_rand = torch.normal(0, 1, (2, 1, 2)), torch.rand((2, 10, 2))
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(
    2, 1, 1)
valid_lens = torch.tensor([2, 6])

attention_rand = AdditiveAttention(key_size=2, query_size=2, num_hiddens=8,
                              dropout=0.1)
attention_rand.eval()
attention_rand(queries_new, keys_rand, values, valid_lens)

d2l.show_heatmaps(attention_rand.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')

image

attention_rand = DotProductAttention(dropout=0.5)
attention_rand.eval()
attention_rand(queries_new, keys_rand, values, valid_lens)

d2l.show_heatmaps(attention_rand.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')

image


(2)只使用矩阵乘法,能否为具有不同矢量长度的查询和键设计新的评分函数?

可以想办法把他俩映射到一个长度。


(3)当查询和键具有相同的矢量长度时,矢量求和作为评分函数是否比“点-积”更好?为什么?

不会,略。

标签:10.3,torch,评分,self,boldsymbol,lens,Pytorch,valid,attention
From: https://www.cnblogs.com/AncilunKiang/p/17785898.html

相关文章

  • 文心一言 VS 讯飞星火 VS chatgpt (120)-- 算法导论10.3 5题
    五、用go语言,设L是一个长度为n的双向链表,存储于长度为m的数组key、prev和next中。假设这些数组由维护双链自由表F的两个过程ALLOCATE-OBJECT和FREE-OBJECT进行管理。又假设m个元素中,恰有n个元素在链表L上,m-n个在自由表上。给定链表L和自由表F,试写出一个过程......
  • 《动手学深度学习 Pytorch版》 10.2 注意力汇聚:Nadaraya-Watson 核回归
    importtorchfromtorchimportnnfromd2limporttorchasd2l1964年提出的Nadaraya-Watson核回归模型是一个简单但完整的例子,可以用于演示具有注意力机制的机器学习。10.2.1生成数据集根据下面的非线性函数生成一个人工数据集,其中噪声项\(\epsilon\)服从均值为0,......
  • 用pytorch 2.1 加速 numpy 代码
    参考https://pytorch.org/blog/compiling-numpy-code/在macM2机器上,快了50%,但没有好几倍。可能和依赖libomp有关brewinstalllibomppythontest_np.pytest_np.py代码如下importtimeimportnumpyasnpdefkmeans(X,means):returnnp.argmin(np.l......
  • pytorch(10.5) Transformer 用到视觉模块
    ViT|VisionTransformer|理论+代码_哔哩哔哩_bilibili   1不用卷积神经网络那些东西(CNN)了全部用Transforme 。2大规模数据训练,小规模数据应用。3效果相当计算训练资源更少。 转换思想224*224像素图像-单个像素(视为一个词token)-16*16个像素图像块patches(......
  • 文心一言 VS 讯飞星火 VS chatgpt (119)-- 算法导论10.3 4题
    四、用go语言,我们往往希望双向链表的所有元素在存储器中保持紧凑,例如,在多数组表示中占用前m个下标位置。(在页式虚拟存储的计算环境下,即为这种情况。)假设除指向链表本身的指针外没有其他指针指向该链表的元素,试说明如何实现过程ALLOCATE-OBIECT和FREE-OBJECT,使得该表示保持紧凑......
  • 《动手学深度学习 Pytorch版》 10.1 注意力提示
    10.1.1生物学中的注意力提示“美国心理学之父”威廉·詹姆斯提出的双组件(two-component)框架:非自主性提示:基于环境中物体的突出性和易见性自主性提示:受到了认知和意识的控制10.1.2查询、键和值注意力机制与全连接层或汇聚层区别开来的元素:是否包含自主性提示在......
  • 文心一言 VS 讯飞星火 VS chatgpt (118)-- 算法导论10.3 3题
    三、用go语言,在ALLOCATE-OBJECT和FREE-OBJECT过程的实现中,为什么不需要设置或重置对象的prev属性呢?文心一言:在Go语言中,ALLOCATE-OBJECT和FREE-OBJECT过程的实现通常不需要显式地设置或重置对象的prev属性。这是因为在Go语言的内存管理中,对象(或更具体地说,变量)的生命......
  • windows下的深度学习环境软件版本(cuda/cudnn/pytorch)
    为了方便多个深度学习框架的环境配置,推荐使用anoconda进行搭建。1.anaconda/miniconda下载地址anacoonda官方下载地址:FreeDownload|Anacondaminiconda官方下载地址: LatestMinicondainstallerlinksbyPythonversion—minicondadocumentation清华镜像源的下载地......
  • 文心一言 VS 讯飞星火 VS chatgpt (117)-- 算法导论10.3 2题
    二、用go语言,对一组同构对象用单数组表示法实现,写出过程ALLOCATE-OBJECT和FREE-OBJECT。文心一言:在Go语言中,我们通常使用指针和结构体来表示和操作复杂的数据结构。对于一组同构对象,我们可以使用一个数组来存储它们的指针,每个指针指向一个对象。下面是使用Go语言实现ALLOCATE-OBJEC......
  • 文心一言 VS 讯飞星火 VS chatgpt (117)-- 算法导论10.3 2题
    二、用go语言,对一组同构对象用单数组表示法实现,写出过程ALLOCATE-OBJECT和FREE-OBJECT。文心一言:在Go语言中,我们通常使用指针和结构体来表示和操作复杂的数据结构。对于一组同构对象,我们可以使用一个数组来存储它们的指针,每个指针指向一个对象。下面是使用Go语言实现ALLOCATE-OB......