首页 > 其他分享 >E. Time Travel

E. Time Travel

时间:2023-10-24 18:57:33浏览次数:34  
标签:le dist int text Travel Time moment time

E. Time Travel

Berland is a country with ancient history, where roads were built and destroyed for centuries. It is known that there always were $n$ cities in Berland. You also have records of $t$ key moments in the history of the country, numbered from $1$ to $t$. Each record contains a list of bidirectional roads between some pairs of cities, which could be used for travel in Berland at a specific moment in time.

You have discovered a time machine that transports you between key moments. Unfortunately, you cannot choose what point in time to end up at, but you know the order consisting of $k$ moments in time $a_{i}$, in which the machine will transport you. Since there is little time between the travels, when you find yourself in the next key moment in time (including after the last time travel), you can travel on at most one existing road at that moment, coming out from the city you were in before time travel.

Currently, you are in city $1$, and the time machine has already transported you to moment $a_{1}$. You want to reach city $n$ as quickly as possible. Determine the minimum number of time travels, including the first one, that you need to make in order to reach city $n$.

Input

The first line contains two integers $n$ and $t$ ($2 \le n \le 2 \cdot 10^5, 1 \le t \le 2 \cdot 10^5$) — the number of cities in Berland and the number of records about key moments in history. Then follows the description of each of the $t$ records.

The first line of each record description contains a single integer $m_{i}$ ($0 \le m_{i} \le \min \left(\frac{n(n-1)}{2}, 2 \cdot 10^5\right)$) — the number of roads in the $i$-th record.

Each of the next $m_i$ lines contains two integers $v_{j}$ and $u_{j}$ ($1 \le v_{j}, u_{j} \le n$, $v_{j} \neq u_{j}$) — the numbers of cities connected by the $j$-th road in the $i$-th key moment in history.

The next line contains a single integer $k$ ($1 \le k \le 2 \cdot 10^5$) — the number of time moments between which movements will occur.

The next line contains $k$ integers $a_1, a_2, \ldots, a_k$ ($1 \le a_{i} \le t$) — the time moments at which you will be after each movement.

It is guaranteed that the sum of $m_{i}$ does not exceed $2 \cdot 10^5$. It is guaranteed that each unordered pair $(u, v)$ occurs in the road description for one record no more than once.

Output

Output a single integer — the minimum number of time travels required to reach city $n$ from city $1$, or $-1$ if it is impossible.

Note that movement to time moment $a_{1}$ is also considered a movement.

Examples

input

5 2
4
1 2
2 3
3 4
4 5
2
2 3
3 5
6
2 1 2 1 2 1

output

5

input

5 2
3
1 2
3 1
4 3
2
2 1
4 5
5
1 2 1 1 1

output

-1

Note

In the first example, you are in city $1$ and move to moment $a_{1} = 2$. Since there are no suitable roads to pass, you do nothing and move to moment $a_{2} = 1$, after which you travel along the road $(1, 2)$. Moving to moment $a_{3} = 2$, you travel along the road $(2, 3)$. Moving to moment $a_{4} = 1$, you stay in city $3$ and make the next time travel. At time moment $a_{5} = 2$, you travel along the road $(3, 5)$ and end up in the final city after $5$ time travels.

In the second example, it can be shown that it is impossible to reach city $5$ with the given time travels.

 

解题思路

  补题的时候做出来了,思维难度不大。

  题目读了半天,大概是说有 $n$ 个点,$t$ 个记录,每个记录分别对应不同的无向图。同时给你一个大小为 $k$ 的时间序列 $a$,$a_i$ 表示第 $i$ 个时刻的图是第 $a_i$ 个记录所表示的无向图。每个时刻可以选择从当前点移动到相邻点(此刻的图中这两点有直接边相连)或不动,你初始时在 $1$ 号点,问从 $1$ 号点到 $n$ 号点的最早(小)时刻是多少。

  难点就在建图上。现在有 $t$ 个图(记录),我们直接统一成一个图来表示,只需标记每条边属于哪个记录即可。与一般的最短路问题定义一样,用 $\text{dist}_{u}$ 表示从 $1$ 到 $u$ 的最早时刻。假设有边 $(u,v)$,属于第 $\text{id}_{(u,v)}$ 个记录,由于到点 $u$ 的最早时刻已经是 $\text{dist}_u$ 了,因此经过 $u$ 到 $v$ 的最早时刻必然要大于 $\text{dist}_u$,那么我们就在 $a$ 里所有是 $a_i = \text{id}_{(u,v)}$ 的时刻中,找到大于 $\text{dist}_u$ 的最小时刻 $w$,如果 $w$ 存在且 $\text{dist}_v > w$,那么我们就更新 $\text{dist}_v = w$。

  对此我们可以开个 $t$ 个 $\text{std::set}$ 来分别存储某个记录都对应哪些时刻,那么就可以通过二分来找到大于 $\text{dist}_u$ 的最小时刻。而最短路算法的话可以用 Dijkstra,正确性证明如下:假设 $u$ 是所有还没确定最小时刻的点中,到达时刻最小的点,那么对于任意一个也没确定的点 $v$,必然有 $\text{dist}_u \leq \text{dist}_v$,而如果存在某个 $v$ 可以更新 $u$,那么必然会有 $w > \text{dist}_v \geq \text{dist}_u$,因此 $u$ 必然下一个可以确定的点,Dijkstra 正确性得证。

  AC 代码如下,时间复杂度为 $O(m(\log{k} + \log{m}))$:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
typedef pair<int, int> PII;

const int N = 2e5 + 10, M = N * 2;

int head[N], e[M], id[M], ne[M], idx;
set<int> st[N];
int dist[N];
bool vis[N];

void add(int u, int v, int w) {
    e[idx] = v, id[idx] = w, ne[idx] = head[u], head[u] = idx++;
}

int main() {
    int n, m, k;
    scanf("%d %d", &n, &m);
    memset(head, -1, sizeof(head));
    for (int i = 1; i <= m; i++) {
        int cnt;
        scanf("%d", &cnt);
        while (cnt--) {
            int u, v;
            scanf("%d %d", &u, &v);
            add(u, v, i), add(v, u, i);
        }
    }
    scanf("%d", &k);
    for (int i = 1; i <= k; i++) {
        int x;
        scanf("%d", &x);
        st[x].insert(i);
    }
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> pq;
    pq.push({0, 1});
    while (!pq.empty()) {
        int u = pq.top().second;
        pq.pop();
        if (vis[u]) continue;
        vis[u] = true;
        for (int i = head[u]; i != -1; i = ne[i]) {
            auto it = st[id[i]].upper_bound(dist[u]);
            if (it != st[id[i]].end() && dist[e[i]] > *it) {
                dist[e[i]] = *it;
                pq.push({*it, e[i]});
            }
        }
    }
    if (dist[n] == 0x3f3f3f3f) dist[n] = -1;
    printf("%d\n", dist[n]);
    
    return 0;
}

 

参考资料

  Codeforces Round #905 (Div. 1, Div. 2, Div. 3) Editorial:https://codeforces.com/blog/entry/121621

标签:le,dist,int,text,Travel,Time,moment,time
From: https://www.cnblogs.com/onlyblues/p/17785433.html

相关文章

  • Unity打造Timer定时器框架
    1:为什么我们要自己造轮子来做定时器系统传统的Unity做定时器的方式有三种,总结如下:对啦!这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础小白,也有一些正在从事游戏开发的技术大佬,欢迎你来交流学习。(1)在组件类里面定义一个变量,每次Update的时候,累积时间,当时间......
  • Qt - QDateTime类的使用
    介绍QDateTime类是Qt框架中用于处理日期和时间的类,在Qt中拥有广泛的应用。它能够精确地表示某个事件或时间点,并且支持对日期和时间进行各种操作和转换,比如计算两个时间之间的差值、设置时区、格式化输出等。使用QDateTime类,我们能够轻松地完成各种日期和时间的转换和处理,从而方......
  • LocalDateTime、LocalDate、Date、String相互转化大全及其注意事项
    一、前言大家在开发过程中必不可少的和日期打交道,对接别的系统时,时间日期格式不一致,每次都要转化!每次写完就忘记了,小编专门来整理一篇来详细说一下他们四个的转换的方法,方便后面使用!!二、LocalDateTime、LocalDate、Date三者联系这里先说一下,为什么日期有Date了,还在JDK8中推出......
  • RuntimeError: “nll_loss_forward_reduce_cuda_kernel_2d_index“ not implemented f
    RuntimeError:"nll_loss_forward_reduce_cuda_kernel_2d_index"notimplementedfor'Int'Traceback(mostrecentcalllast):File"E:/MyWorkspace/EEG/Pytorch/Train.py",line79,in<module>opti='Adam')......
  • [转]setTimeout 和 setInterval 的定时时间深入研究
    原文地址:setTimeout和setInterval的定时时间深入研究-知乎setInterval() -间隔指定的毫秒数不停地执行指定的代码(一直执行)。setTimeout() -在指定的毫秒数后执行指定代码(只执行一次)。使用setInterVal:functiondoStuff(){//此处为需要执行一段时间T......
  • 题解:【CF1888E】 Time Travel
    题目链接刚从modinte那里学到的广义dijkstra。注意到一定不会有路径形如\(x\toy\tox\),这样等价于\(x\)在原地等上两个时刻,我们记\(d_i\)表示到达\(i\)节点需要的最少时间。建图,边权为当前这一条边在哪一个历史时刻。然后用一个set来存下每个历史时刻在第几次时间......
  • Python日期加减控制-datetime库
    理想汽车笔试时间好短,没控制好时间就结束了,日期初始化timetime()初始化时间输入年月日时分秒的int参数timedelta为操作的时间,可以只输入某个单位的时间fromdatetimeimportdatetime,timedeltadt=datetime()字符串格式化通过{}的方式"{1}{0}{1}".format("hello",......
  • dolphinscheduler报错:Connect to 192.168.xx.xx:8088 [192.168.xx.xx/110.173.196.1]
    报错信息:在dophin中抽取mysql的数据到hive中报错[ERROR]2023-10-2015:33:10.461org.apache.dolphinscheduler.common.utils.HttpUtils:[73]-Connectto192.168.xx.xx:8088[192.168.xx.xx/110.173.196.1]failed:connecttimedoutorg.apache.http.conn.ConnectTimeout......
  • Pixie: A System for Recommending 3+ Billion Items to 200+ Million Users in Real-
    目录概符号说明PixieEksombatchaiC.,JindalP.,LiuJ.Z.,LiuY.,SharmaR.,SugnetC.,UlrichM.andLeskovecJ.Pixie:Asystemforrecommending3+billionitemsto200+millionusersinreal-time.WWW,2018.概Pinterest的一个大规模处理图的方案(偏推理......
  • jfinal框架下,连接国产达梦数据库,抛出SocketTimeoutException异常
    公司为政府开发项目,主框架选择springboot,orm框架使用jfinal。数据库为国产达梦数据库写统计类服务时,通常sql运行时间会比较久,超过10s的sql一定会报SocketTimeoutException异常 尝试使用原生jdbc创建连接,运行sql毫无问题。遂检查连接池设置。jfinal使用druid连接池网上搜索......