首页 > 其他分享 >Almost Tight Multi-User Security under Adaptive Corruptions from LWE in the Standard Model

Almost Tight Multi-User Security under Adaptive Corruptions from LWE in the Standard Model

时间:2023-10-23 18:32:55浏览次数:48  
标签:Multi Almost almost HPS under our Model security LWE

Abstract. In this work, we construct the first digital signature (SIG)

and public-key encryption (PKE) schemes with almost tight multi-user

security under adaptive corruptions based on the learning-with-errors

(LWE) assumption in the standard model. Our PKE scheme achieves almost tight IND-CCA security and our SIG scheme achieves almost tight

strong EUF-CMA security, both in the multi-user setting with adaptive

corruptions. The security loss is quadratic in the security parameter λ,

and independent of the number of users, signatures or ciphertexts. Previously, such schemes were only known to exist under number-theoretic assumptions or in classical random oracle model, thus vulnerable to quantum adversaries.

To obtain our schemes from LWE, we propose new frameworks for

constructing SIG and PKE with a core technical tool named probabilistic quasi-adaptive hash proof system (pr-QA-HPS). As a new variant of

HPS, our pr-QA-HPS provides probabilistic public and private evaluation

modes that may toss coins. This is in stark contrast to the traditional

HPS [Cramer and Shoup, Eurocrypt 2002] and existing variants like approximate HPS [Katz and Vaikuntanathan, Asiacrypt 2009], whose public and private evaluations are deterministic in their inputs. Moreover,

we formalize a new property called evaluation indistinguishability by requiring statistical indistinguishability of the two probabilistic evaluation

modes, even in the presence of the secret key. The evaluation indistinguishability, as well as other nice properties resulting from the probabilistic features of pr-QA-HPS, are crucial for the multi-user security proof

of our frameworks under adaptive corruptions.

As for instantiations, we construct pr-QA-HPS from the LWE assumption and prove its properties with almost tight reductions, which

admit almost tightly secure LWE-based SIG and PKE schemes under our

frameworks. Along the way, we also provide new almost-tight reductions

from LWE to multi-secret LWE, which may be of independent interest. 

标签:Multi,Almost,almost,HPS,under,our,Model,security,LWE
From: https://blog.51cto.com/u_14897897/7992966

相关文章

  • vue2 el-input-number 千分位显示的支持(不影响v-model的数值取值)
    <!--增加v-thousands指令--><el-input-numberv-model="row.money"v-thousands:controls="false":min="0":precision="2"style="width:100%"//添加全局指令或局部指令directives:......
  • UniKGQA Unified Retrieval and Reasoning for Solving Multi-hop Question Answering
    目录概主要内容代码JiangJ.,ZhouK.,ZhaoW.andWenJ.UniKGQA:Unifiedretrievalandreasoningforsolvingmulti-hopquestionansweringoverknowledgegraph.ICLR,2023.概统一:从知识图谱中检索出相关的子图,并在子图中进行推理.主要内容我们有知识图谱......
  • Transformer-based Encoder-Decoder Models
    整理原链接内容方便阅读https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Encoder_Decoder_Model.ipynbtitle:"Transformer-basedEncoder-DecoderModels"thumbnail:/blog/assets/05_encoder_decoder/thumbnail.pngauthors:user:p......
  • 论文阅读:Unifying Large Language Model and Knowledge Graph:A RoadMap
    1Introduction大模型和知识图谱结合的综述。简单介绍一下大模型和知识图谱的优缺点:如上所示。本文主要划分为三个模块,分别为:KG-enhancedLLMsLLM-augmentedKGsSynergizedLLM+KG2Background主要介绍了LLM和KG2.1LargeLanguageModel(LLMs)主要依靠transforme......
  • 多路径multipath共享磁盘配置
    1. 配置共享磁盘1.1. 主机关机的情况下,添加4块硬盘,每块磁盘设置如下  1.2. 另外一台主机添加上面已经存在的磁盘,同样设置 1.3. 修改两台虚拟机的配置文件(.vmx)disk.locking="FALSE"disk.EnableUUID="TRUE"scsi1:1.SharedBus="Virtual"......
  • 执行这个这个命令sh download_depth_models.sh【记录】
     要下载上述模型,自己的电脑执行不了sh命令。 网上先下载git这个软件。sh.exe用这个软件来运行cd到 download_depth_models.sh这个文件所在的路径 再sh download_depth_models.sh执行这个命令! 方法二:直接用记事本打开这个文件download_depth_models.sh里面有ur......
  • 无涯教程-Arduino - Multi-Dimensional Arrays函数
    具有二维的数组(即下标)通常表示由以行和列排列的信息组成的值表。intb[2][2]={{1,2},{3,4}};这些值按大括号按行分组,因此,1和2分别初始化b[0][0]和b[0][1],而3和4分别初始化b[1][0]和b[1][1],如果给定行的初始化程序不足,则将该行的其余元素初始化为0。因此......
  • Conditional Probability Models for Deep Image Compression
    深度神经网络被训练来作为图像压缩的自动编码器是一个前沿方向,面临的挑战有两方面——量化(quantization)和权衡reconstructionerror(distortion)andentropy(rate),这篇文章关注后者。主要思想是使用上下文模型直接对潜在表示的熵建模;3D-CNN一个学习自动编码器潜在分布的条......
  • ModelSim 安装指南
    转载请标明出处:https://www.cnblogs.com/leedsgarden/p/17778527.html免费版可以满足大部分Verilog教学,本文介绍的是ModelSim的免费版如果有FPGA需求的,推荐使用SE版本破解安装下载页面下载对应的windows版本或者Linux版本,启动安装程序后一路默认即可。(注意留意......
  • ModelCenter—多学科设计优化软件
    产品概述    AnsysModelCenter是美国Ansys公司旗下的一款产品,用于赋能工程师创建和自动化多工具工作流,优化产品设计。ModelCenter是一个创新的软件框架,可以灵活地满足基于模型的需求工程。在ModelCenter框架内工作,工程师能够将多种软件工具集成在一起创建自动化工程工作流......