首页 > 其他分享 >Transformer-based Encoder-Decoder Models

Transformer-based Encoder-Decoder Models

时间:2023-10-22 12:22:08浏览次数:45  
标签:Transformer mathbf Models text decoder encoder vector Decoder input

整理原链接内容方便阅读
https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Encoder_Decoder_Model.ipynb


title: "Transformer-based Encoder-Decoder Models"
thumbnail: /blog/assets/05_encoder_decoder/thumbnail.png
authors:

  • user: patrickvonplaten

Transformers-based Encoder-Decoder Models

Open In Colab

Transformer-based Encoder-Decoder Models

!pip install transformers==4.2.1
!pip install sentencepiece==0.1.95

The transformer-based encoder-decoder model was introduced by Vaswani et al. in the famous Attention is all you need paper and is today the de-facto standard encoder-decoder architecture in natural language processing (NLP).

Recently, there has been a lot of research on different pre-training objectives for transformer-based encoder-decoder models, e.g. T5, Bart, Pegasus, ProphetNet, Marge, etc..., but the model architecture has stayed largely the same.

The goal of the blog post is to give an in-detail explanation of how the transformer-based encoder-decoder architecture models sequence-to-sequence problems. We will focus on the mathematical model defined by the architecture and how the model can be used in inference. Along the way, we will give some background on sequence-to-sequence models in NLP and break down the transformer-based encoder-decoder architecture into its encoder and decoder parts. We provide many illustrations and establish the link between the theory of transformer-based encoder-decoder models and their practical usage in

标签:Transformer,mathbf,Models,text,decoder,encoder,vector,Decoder,input
From: https://www.cnblogs.com/wolfling/p/17780199.html

相关文章

  • swin transformer v1.0环境配置训练(mmsegmentation/pascalvoc数据集)
    本文选用mmlab的mmsegmentationv1.1.0的语义分割为例。吨吨吨弟弟123554###1.配置环境要求官网中的最低要求为cuda10.2+以及pytorch1.8+.......
  • 执行这个这个命令sh download_depth_models.sh【记录】
     要下载上述模型,自己的电脑执行不了sh命令。 网上先下载git这个软件。sh.exe用这个软件来运行cd到 download_depth_models.sh这个文件所在的路径 再sh download_depth_models.sh执行这个命令! 方法二:直接用记事本打开这个文件download_depth_models.sh里面有ur......
  • Conditional Probability Models for Deep Image Compression
    深度神经网络被训练来作为图像压缩的自动编码器是一个前沿方向,面临的挑战有两方面——量化(quantization)和权衡reconstructionerror(distortion)andentropy(rate),这篇文章关注后者。主要思想是使用上下文模型直接对潜在表示的熵建模;3D-CNN一个学习自动编码器潜在分布的条......
  • ModelSim 安装指南
    转载请标明出处:https://www.cnblogs.com/leedsgarden/p/17778527.html免费版可以满足大部分Verilog教学,本文介绍的是ModelSim的免费版如果有FPGA需求的,推荐使用SE版本破解安装下载页面下载对应的windows版本或者Linux版本,启动安装程序后一路默认即可。(注意留意......
  • 论文阅读:Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point M
    Point-BERT:Pre-training3DPointCloudTransformerswith MaskedPointModeling摘要我们提出了Point-BERT,一个学习注意力的新范式,将BERT[8]的概念推广到三维点云。受BERT的启发,我们设计了一个掩蔽点建模(MPM)任务来预先训练点云注意力。具体来说,我们首先将点云划分为几个局部的......
  • Conditional Probability Models for Deep Image Compression
    深度神经网络被训练来作为图像压缩的自动编码器是一个前沿方向,面临的挑战有两方面——量化(quantization)和权衡reconstructionerror(distortion)andentropy(rate),这篇文章关注后者。主要思想是使用上下文模型直接对潜在表示的熵建模;3D-CNN一个学习自动编码器潜在分布的条......
  • 论文阅读:Knowledge Distillation via the Target-aware Transformer
    摘要Knowledgedistillationbecomesadefactostandardtoimprovetheperformanceofsmallneuralnetworks.知识蒸馏成为提高小型神经网络性能的事实上的标准。Mostofthepreviousworksproposetoregresstherepresentationalfeaturesfromtheteachertothes......
  • Internet-augmented language models through few-shot prompting for open-domain qu
    Internet-augmentedlanguagemodelsthroughfew-shotpromptingforopen-domainquestionanswering 其实我没怎么正经读过论文,尤其是带实验的,我目前认真读过的(大部头)也就是一些LLM的综述。记录这个文档主要是防止自己读着读着玩手机去了/注意力不集中了跑路了/没记录困惑导......
  • transformer结构
    Transformer模型采用了一个特殊的神经网络架构,它主要包括编码器(Encoder)和解码器(Decoder)两个部分。这一架构是Transformer的关键组成部分,它被广泛用于自然语言处理(NLP)等任务。编码器(Encoder):编码器是Transformer模型的第一个部分,用于处理输入序列。它通常包括多个相同的编码器层,......
  • modelsim仿真使用小技巧
    1.在sim界面可以看到仿真的模块如果想将这些模块添加到仿真界面(wave),可以选中模块再ctrl+w即可,在wave仿真界面,全选波形(ctrl+a),再ctrl+g即可将波形自动分组,再双击各个组名即可重新命名......