首页 > 其他分享 >CF1542E2 Abnormal Permutation Pairs (hard version) 题解

CF1542E2 Abnormal Permutation Pairs (hard version) 题解

时间:2023-10-19 09:58:09浏览次数:50  
标签:Pairs 排列 int 题解 hard 枚举 对数 mod 逆序

Abnormal Permutation Pairs (hard version)

两个限制:字典序小、逆序对大,一个显然的想法就是确保一对关系,统计另一对关系。

确保哪一对呢?我们想了想,决定确保字典序小,因为字典序是可以贪心的。

具体而言,我们考虑两个排列自第 \(i\) 位开始出现了不同。这样子,我们便将两个排列各自划成两段,即 \([1,i-1]\) 与 \([i,n]\)。则两排列的第一段是相同的。

考虑借鉴 CDQ 分治的思想,将逆序对分为三类,即首段中、末段中、两段间。因为两排列首段相同,所以首段中的逆序对数相等;因为两排列中每一段的组成元素相同,所以两段间的逆序对数亦相等;有区别的只有末端中的逆序对数。

于是,我们考虑枚举这个 \(i\),则前 \(i-1\) 位就有 \(n^{\underline{i-1}}\) 种取值方案。

我们还剩下 \(n-i+1\) 个互不相同的数。因为逆序对仅与大小关系相关,所以我们完全可以将其映射作一个长度为 \(n-i+1\) 的排列而不改变逆序对数。

现在考虑枚举第 \(i\) 位两个排列分别填了什么。设排列 \(p\) 填了 \(j\)(实际上是剩余数中第 \(j\) 小的数),\(q\) 填了 \(k\)(同理,实质是第 \(k\) 小的数),则要满足字典序限制则应有 \(j<k\)。\(j\) 对后面元素贡献了 \(j-1\) 个逆序对,\(k\) 对后面元素贡献了 \(k-1\) 个逆序对,则现在 \(p\) 比 \(q\) 少了 \(k-j\) 个逆序对。

因为后 \(n-i\) 位以后就可以随便填了,所以我们就设一个 \(f_{i,j}\) 表示长度为 \(i\) 的排列出现 \(j\) 个逆序对的方案数。枚举数字 \(i\) 填哪里就可以做到 \(n^4\),用前缀和/差分优化就能做到 \(n^3\),过于基础不再赘述。

现在回到 \(p\) 填 \(j\)、\(q\) 填 \(k\) 的情形。则,\(p\) 要保证后 \(n-i\) 位中逆序对数至少比 \(q\) 多 \(k-j+1\) 个才能满足逆序对的限制。

考虑枚举 \(i,j,k\) 以及 \(p,q\) 在后 \(n-i\) 位中逆序对数分别是 \(J,K\),可以做到垃圾的 \(n^7\) 复杂度;

但注意到我们对于同样的 \(J-K\) 只关心 \(k-j+1\),于是我们仅枚举 \(J,K\),再预处理出此时合法的 \(j,k\) 对数,就能做到 \(n^5\);

假如再观察到 \(j-k+1\) 最大只到 \(n-i\),这样 \(J-K\) 在大于 \(n-i\) 后,对于再之前的所有 \(K\) 来说合法的 \(j,k\) 对数便会一直相等,这样枚举 \(K\) 时就只用枚举 \(J\) 之前的 \(n-i\) 个位置,之前的用一个前缀和就能解决,这样就能做到 \(n^4\);

优化到正解 \(n^3\) 的做法是考虑 \(J\) 增加时,对于不同的 \(K\) 来说 \(j-k\) 数对的增量是什么;然后发现这一增量在 \(J-K=2\) 时是 \(n-i,J-K=3\) 时是 \(n-i-1,J-K=k\) 时是 \(n-i-k+2\)。放到平面直角坐标系上就是一个三角形的形式,可以通过预处理 \(f_{i,j}\) 数组的前缀和以及 \(j\times f_{i,j}\) 的前缀和来 \(O(1)\) 求出。

细节很多,详见代码。

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=510;
const int M=125100;
int n,mod,res;
int com[N],f[M],fac[N],s[M],t[M],C[N][N],d[N];
signed main(){
    cin>>n>>mod;
    for(int i=1;i<=n;i++) com[i]=i*(i-1)/2;
    fac[0]=1;
	for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mod;
    for(int i=0;i<=n;i++) C[i][0]=1;
    for(int i=1;i<=n;i++) for(int j=1;j<=i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
    f[0]=1;
    for(int i=0;i<n;i++){
        for(int j=1;j<=com[i];j++) (f[j]+=f[j-1])%=mod;
		f[com[i]+1]=0;
        for(int j=0;j<=i;j++) d[j]=0;
        for(int J=0;J<=i;J++) for(int K=J+1;K<=i;K++) d[K-J]++;
        for(int j=1;j<=i;j++) d[j]+=d[j-1];
        for(int j=0;j<=com[i];j++){
			s[j]=f[j];
			t[j]=1ll*f[j]*j%mod;
		}
        for(int j=1;j<=com[i];j++){
			(s[j]+=s[j-1])%=mod;
			(t[j]+=t[j-1])%=mod;
		}
        for(int j=2,k=0;j<=com[i];j++){
            if(j>i){
				(res+=1ll*d[i]*fac[n-i-1]%mod*C[n][n-i-1]%mod*f[j]%mod*s[j-i-1]%mod)%=mod;
				(k+=mod-1ll*f[j-i-1]*d[i]%mod)%=mod;
			}
            (k+=(0ll+t[j-2]+mod-1ll*(j-i-2)*s[j-2]%mod)%mod)%=mod;
            if(j-1>i) (k+=(2ll*mod-t[j-i-2]+1ll*(j-i-2)*s[j-i-2]%mod)%mod)%=mod;
            (res+=1ll*C[n][n-i-1]*fac[n-i-1]%mod*f[j]%mod*k%mod)%=mod;
        }
        for(int j=com[i];j>=0;j--) (f[j+i+1]+=mod-f[j])%=mod;
    }
    cout<<res;
    return 0;
}

标签:Pairs,排列,int,题解,hard,枚举,对数,mod,逆序
From: https://www.cnblogs.com/xuantianhao/p/17773997.html

相关文章

  • AT_tdpc_tree 木 题解
    木弱智DP题,直接设\(f_i\)表示\(i\)子树内染色的方案数,然后每次合并一个点与它的儿子即可(具体而言,因为儿子间独立,所以方案数就是二项式系数)。需要注意的是因为第一条边可以在任意位置,所以要以每个点为根各DP一次。但是这样每条边会被算两次,所以乘以2的逆元即可。时间......
  • [ARC072E] Alice in linear land 题解
    [ARC072E]Aliceinlinearland首先,一个trivial的想法是记\(f_i\)表示第\(i\)步前离终点的距离,于是\(f_i=\min\Big(f_{j-1},|f_{j-1}-d_i|\Big)\)。然后,我们设\(f_i'\)表示在修改第\(i\)步后,此时离终点的距离。明显,\(f_i'\)可以为任意不大于\(f_i\)的值,因为此时......
  • CF568E Longest Increasing Subsequence 题解
    LongestIncreasingSubsequenceLIS问题有两种主流\(O(n\logn)\)解法,最常见的树状数组法,以及不那么常见的二分法。然后考虑本题,发现一个神奇的思路就是求出LIS后倒序复原出数组。进一步思考后发现,因为本题是LIS(LongestIncreasingSubsequence)而非LNDS(LongestNon-Decr......
  • [AGC046D] Secret Passage 题解
    SecretPassage稍微观察一下就能发现,任一时刻,我们剩下的东西必然是一段定死了的后缀,加上一些可以任意塞位置的0与1。考虑任意一个由上述时刻生成的串,就会发现它与该后缀的最长公共子序列长度即为后缀长度,且还剩余一些0与1。于是考虑模拟最长公共子序列的过程。设\(g_{i,j......
  • Atcoder Beginner Contest 324 G Generate Arrays 题解-Treap
    为了更好的阅读体验,请点击这里题目链接套上平衡树板子就能做的很快的题,然后因为是指针存树,因此交换只需要把序列大小较小的挨个拿出来插到相应的地方即可。复杂度\(O(N\log^2N)\)。但是一定要记住不可以直接使用std::swap交换包含带有指针的类的实例(如代码中的Treap类)!......
  • 精选题解汇总
    Part1比赛题解CF1873CF1203CF1234CF1249Part2难题题解P1124P6346P2198P7974P4814......
  • P1124 题解
    题目大意一个长度为\(n\)的字符串\(S\),进行以下操作。假设\(s\)为acbdef,每一次将首字母移至末尾,得到\(6\)个字符串:acbdefcbdefabdefacdefacbefacbdfacbde将每个字符串的首字母排序:acbdefbdefaccbdefadefacbefacbdfacbde每个字符串的末尾连在一起为fcab......
  • Linux 环境下(Ubuntu)webbench的安装问题解决与使用
    webbench最多可以模拟3万个并发连接去测试网站的负载能力。并发能力比较高,可以测试https及动态静态页面。适合中小型网站测试承受能力。原理:父进程fork若干个子进程,每个子进程在用户要求时间或默认的时间内对目标web循环发出实际访问请求,父子进程通过管道进行通信,子进程通过......
  • P6346 题解
    题目大意如果\(\texttt{Kevin}\)想和第\(i\)个人交朋友,要么需要认识\(a_i\)个人,要么付出\(b_i\)的代价,他让你使\(\texttt{Kevin}\)与所有的人交朋友。解题思路如果想水到\(15\)分,也就是所有\(b_i\)都等于\(1\)的情况,那我们可以直接排个序,然后遍历一下每一个人,......
  • P2198 题解
    解题思路激光塔一定在最后。\(f_{i,j}\)表示前\(i\)个位置放\(j\)(\(j\lei\))个放射塔,那么\(i-j\)个干扰塔的伤害。若第\(i\)个位置放放射塔:\(f_{i,j}=f_{i-1,j-1}+(j-1)\timesg\times[t+b\times(i-j)]\)若第\(i\)个位置放干扰塔,也就是\(j<i\):\(f_{i,j}=\max\{f_{i-......