这两个题只有数据范围上面的差距
这个题我们大体思路是维护双指针,枚举数字,维护集合。
这是灵神视频的代码
class Solution: def findIndices(self, nums: List[int], indexDifference: int, valueDifference: int) -> List[int]: max_idx = min_idx = 0 for j in range(indexDifference, len(nums)): i = j - indexDifference if nums[i] > nums[max_idx]: max_idx = i if nums[i] < nums[min_idx]: min_idx = i if abs(nums[j] - nums[max_idx]) >= valueDifference: return [max_idx, j] if abs(nums[j] - nums[min_idx]) >= valueDifference: return [min_idx, j] return [-1, -1]
这是自己写时候的代码--真的维护了个集合
class Solution { public: vector<int> findIndices(vector<int>& nums, int indexDifference, int valueDifference) { int n = nums.size(); vector<int> res(2, -1); set<int> st; unordered_map<int, int> mp; int l; for(int r = indexDifference; r < n; r ++ ) { l = r - indexDifference; st.insert(nums[l]); mp[nums[l]] = l; //找到大于等于一个数的最小数 int tmp = nums[r] + valueDifference; auto upper = st.lower_bound(tmp); if(upper != st.end()) { res[0] = mp[*upper]; res[1] = r; break; } //找到小于等于一个数的最大数 //upper_bound找到第一个大于tmp的数字,将返回的迭代器--就可找到小于等于一个数的最大数 tmp = nums[r] - valueDifference; auto lower = st.upper_bound(tmp); if(lower != st.begin()) { lower -- ; res[0] = mp[*lower]; res[1] = r; break; } } return res; } };
二维前后缀分解题目
class Solution: def constructProductMatrix(self, grid: List[List[int]]) -> List[List[int]]: n, m = len(grid), len(grid[0]) MOD = 12345 p = [[0] * m for _ in range(n)] suf = 1 for i in range(n - 1, -1, -1): for j in range(m - 1, -1, -1): p[i][j] = suf suf = suf * grid[i][j] % MOD pre = 1 for i in range(n): for j in range(m): p[i][j] = p[i][j] * pre % MOD pre = pre * grid[i][j] % MOD return p
标签:upper,lower,idx,nums,int,bound From: https://www.cnblogs.com/zk6696/p/17773214.html