首页 > 其他分享 >实验三

实验三

时间:2022-10-06 11:33:20浏览次数:75  
标签:OFPT struct switch header ofp 实验 message

实验3:OpenFlow协议分析实践

 

一、实验目的

  1. 能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
  2. 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

  1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。
    

主机IP地址
h1 192.168.0.101/24
h2 192.168.0.102/24
h3 192.168.0.103/24
h4 192.168.0.104/24
  (1)HELLO : 控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机端口39666  

 

 

2)Features Request: 控制器向将交换机发送Featrues Request消息并获取交换机特征信息

              控制器6633端口(我需要你的特征信息) ---> 交换机39666端口

 

 

(3)Set Conig:控制器告诉交换机如何配置

  控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机39666端口

 

 

(4)Port_Status:当交换机端口发生变化时,告知控制器相应的端口状态。

 

 (5)Features Reply:交换机46876端口(这是我的特征信息,请查收) ---> 控制器6633端口

 

 (6)Packet_in:交换机收到数据包后问控制器如何处理

 

(7)Flow_mod

 

 

(8)Packet_out:控制器指挥交换器按action执行

 

 进阶:

1、openflow主要消息的类型

 

enum ofp_type {
/* Immutable messages. */
OFPT_HELLO, /* Symmetric message */
OFPT_ERROR, /* Symmetric message */
OFPT_ECHO_REQUEST, /* Symmetric message */
OFPT_ECHO_REPLY, /* Symmetric message */
OFPT_VENDOR, /* Symmetric message */

/* Switch configuration messages. */
OFPT_FEATURES_REQUEST, /* Controller/switch message */
OFPT_FEATURES_REPLY, /* Controller/switch message */
OFPT_GET_CONFIG_REQUEST, /* Controller/switch message */
OFPT_GET_CONFIG_REPLY, /* Controller/switch message */
OFPT_SET_CONFIG, /* Controller/switch message */

/* Asynchronous messages. */
OFPT_PACKET_IN, /* Async message */
OFPT_FLOW_REMOVED, /* Async message */
OFPT_PORT_STATUS, /* Async message */

/* Controller command messages. */
OFPT_PACKET_OUT, /* Controller/switch message */
OFPT_FLOW_MOD, /* Controller/switch message */
OFPT_PORT_MOD, /* Controller/switch message */

/* Statistics messages. */
OFPT_STATS_REQUEST, /* Controller/switch message */
OFPT_STATS_REPLY, /* Controller/switch message */

/* Barrier messages. */
OFPT_BARRIER_REQUEST, /* Controller/switch message */
OFPT_BARRIER_REPLY, /* Controller/switch message */

/* Queue Configuration messages. */
OFPT_QUEUE_GET_CONFIG_REQUEST, /* Controller/switch message */
OFPT_QUEUE_GET_CONFIG_REPLY /* Controller/switch message */

};

 2、HELLO:

/* Header on all OpenFlow packets. */
struct ofp_header {
uint8_t version; /* OFP_VERSION. */
uint8_t type; /* One of the OFPT_ constants. */
uint16_t length; /* Length including this ofp_header. */
uint32_t xid; /* Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

/* OFPT_HELLO. This message has an empty body, but implementations must
* ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
struct ofp_header header;
};

3、Features Request:

struct ofp_header {
uint8_t version; /* OFP_VERSION. */
uint8_t type; /* One of the OFPT_ constants. */
uint16_t length; /* Length including this ofp_header. */
uint32_t xid; /* Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */
};

 

4、set config:

struct ofp_switch_config {
struct ofp_header header;
uint16_t flags; /* OFPC_* flags. */
uint16_t miss_send_len; /* Max bytes of new flow that datapath should
send to the controller. */
};

5、port_status:

6、features replay:

struct ofp_switch_features {
struct ofp_header header;
uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are
implementer-defined. */

uint32_t n_buffers; /* Max packets buffered at once. */

uint8_t n_tables; /* Number of tables supported by datapath. */
uint8_t pad[3]; /* Align to 64-bits. */

/* Features. */
uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */
uint32_t actions; /* Bitmap of supported "ofp_action_type"s. */

/* Port info.*/
struct ofp_phy_port ports[0]; /* Port definitions. The number of ports
is inferred from the length field in
the header. */
};

7、Packet_in:

struct ofp_packet_in {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath. */
uint16_t total_len; /* Full length of frame. */
uint16_t in_port; /* Port on which frame was received. */
uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */
uint8_t pad;
uint8_t data[0]; /* Ethernet frame, halfway through 32-bit word,
so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof(struct ofp_packet_in, data) ==
sizeof(struct ofp_packet_in) - 2. */
};

 

8、Flow_mod:

struct ofp_flow_mod {
struct ofp_header header;
struct ofp_match match; /* Fields to match */
uint64_t cookie; /* Opaque controller-issued identifier. */

/* Flow actions. */
uint16_t command; /* One of OFPFC_*. */
uint16_t idle_timeout; /* Idle time before discarding (seconds). */
uint16_t hard_timeout; /* Max time before discarding (seconds). */
uint16_t priority; /* Priority level of flow entry. */
uint32_t buffer_id; /* Buffered packet to apply to (or -1).
Not meaningful for OFPFC_DELETE*. */
uint16_t out_port; /* For OFPFC_DELETE* commands, require
matching entries to include this as an
output port. A value of OFPP_NONE
indicates no restriction. */
uint16_t flags; /* One of OFPFF_*. */
struct ofp_action_header actions[0]; /* The action length is inferred
from the length field in the
header. */
};

9、packet_out:

struct ofp_packet_out {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */
uint16_t in_port; /* Packet's input port (OFPP_NONE if none). */
uint16_t actions_len; /* Size of action array in bytes. */
struct ofp_action_header actions[0]; /* Actions. */
/* uint8_t data[0]; */ /* Packet data. The length is inferred
from the length field in the header.
(Only meaningful if buffer_id == -1.) */
};

3.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

  答:Tcp协议。

4个人总结:

一定要仔仔细细地将老师ppt里地内容要求看一遍,记住每一个关键点和步骤,按照正确的操作顺序一步步将实验一个步骤一个步骤地操作下来。如果发现实验结果不对或者不符合预期,那么第一个原因应该就是顺序错了,比如先拓扑后抓包这个要点漏了。在完成每一个步骤需要截图的时候,先仔细将老师需要我们截图到的内容确定一边,不能像机器一样一直傻傻地截图下来,这样会损失一大部分时间。另外在自己的短板之处要积极寻求支援,并且加以改正。

 

 

 

标签:OFPT,struct,switch,header,ofp,实验,message
From: https://www.cnblogs.com/212006111hxy/p/16757187.html

相关文章

  • 实验3:OpenFlow协议分
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20.0......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求1./home/用户名/学号/lab3/目录下的拓扑文件2.wireshark抓包的结果截图和对应的文字说明hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机59728......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求:1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.查看抓包结果,分析OpenFlow协议中交......
  • 实验3:OpenFlow协议分析实践
    拓扑文件抓包流程图1、hello55394向6633发送hello包,并且使用openflow1.06633向55394发送hello包,并且使用openflow1.02、features_request控制器6633端口(我需要......
  • 实验4:开源控制器实践——OpenDaylight
    一、实验要求1.利用Mininet平台搭建下图所示网络拓扑,并连接OpenDaylight控制器命令行连接控制器sudomn--topo=single,3--controller=remote,ip=127.0.0.1,port=6633......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。hello控制器6633端口(我最高能支持OpenFl......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求hello控制器6633端口--->交换机35534端口交换机35534端口--->控制器6633端口FeaturesRequest控制器6633端口--->交换机35534端口SetConig控制......
  • 实验3:OpenFlow协议分析实践
    基础要求:1.hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机47646端口交换机47646端口(我最高能支持OpenFlow1.0)--->控制器6633端口于是双方建立连接,并......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • 实验三:Openflow协议分析实践
    一、基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.查看抓包结果,分析OpenFlow协议中......