首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-10-06 11:24:00浏览次数:49  
标签:struct uint16 OpenFlow 实践 header ofp 交换机 实验 6633

(一)基本要求:

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。


2.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

流程图:

1).hello:35084和6633相互发hello包,然后双方建立连接,并使用OpenFlow 1.0。


2).Features Request / Set Conig:

控制器6633端口(我需要你的特征信息) ---> 交换机35084端口

控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机35084端口

3).Features Reply:

⚫ datapath_id:唯一标识符;
⚫ n_buffers:交换机缓冲区可以缓存的最大数据包个数;
⚫ n_tables:流表数量;
⚫ pad:可以理解为填充值;
⚫ capabilities:支持的特殊功能;
⚫ actions:支持的动作;
⚫ port data:物理端口描述列表。
交换机35082端口(这是我的特征信息,请查收) ---> 控制器6633端口

4).Packet_in:

有两种情况:
• 交换机查找流表,发现没有匹配条目时
• 有匹配条目但是对应的action是OUTPUT=CONTROLLER时
交换机35082端口(有数据包进来,请指示)---> 控制器6633端口

5).Flow_mod:

控制器收到 Packet‐in 消息后,可以发送 Flow‐Mod 消息向交换机写一个流表项。并且将 Flow‐Mod 消息中的 buffer_id 字段设置为 Packet‐in 消息中的 buffer_id 值。从而控制器向交换机写入了一条与数据包相关的流表项,并且指定该数据包按照此流表项的 action 列表处理
分析抓取的flow_mod数据包,控制器通过6633端口向交换机35084端口
下发流表项,指导数据的转发处理

6).Packet_out:

Packet-Out消息是从OpenFlow控制器向OpenFlow交换机发送的消息,是包含数据包发送命令的消息”。
若OpenFlow交换机的缓存中已存在数据包,而OpenFlow控制器发出“发送该数据包”的命令时,该消息指定了表示相应数据包的buffer_id。使用Packet-Out消息还可将OpenFlow控制器创建的数据包发送至OpenFlow交换机。此时,buffer_id置为-1,在Packet-Out消息的最后添加数据包数据。

7).交互图:

Title: OpenFlow协议中交换机与控制器的消息交互过程
Note left of 6633: 控制器
Note right of 35082: 交换机
6633->35082:Hello
35082->6633:Hello
35082->6633:Features Request
6633->35082:Set Config
35082->6633:Port Status
35082->6633:Features Reply
35082->6633:Packet in
6633->35082:Flow mod
6633->35082:Packet out

3.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

答:是TCP协议。

(二)进阶要求:将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

1).hello

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};

2).Features Request:

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

3).Set Config:

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

4).Port Status:

struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

5).Port Reply:

struct ofp_stats_reply {
    struct ofp_header header;
    uint16_t type;              /* One of the OFPST_* constants. */
    uint16_t flags;             /* OFPSF_REPLY_* flags. */
    uint8_t body[0];            /* Body of the reply. */
};

6).Packet in:

struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};
OFP_ASSERT(sizeof(struct ofp_packet_in) == 20);

7).Flow mod:

struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};
OFP_ASSERT(sizeof(struct ofp_flow_mod) == 72);

8).Packet out:

struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};
OFP_ASSERT(sizeof(struct ofp_packet_out) == 16);

三、心得体会:

本次实践不算太难,主要就是分析抓包的结果,跟着pdf就可以做出来,对这个OpenFlow 交换机与控制器交互过程有所了解。对于hello,对wireshark抓包的过程更加熟悉。进阶的时候需要打开openflow.h里面查看数据结构,代码量还是挺多的,在里面找结构有点困难,找了很长时间才找出主要消息类型的结构构成。
遇到的主要的问题就是有可能会出现抓包找不到HELLO的情况,问题在于要先开启wires hark然后点出any,再构建拓扑,没打开any后面抓包是抓不到HELLO的,因为可能在抓包之前就已经进行过HELLO了,所以要先打开wires hark的any再构建拓扑。

标签:struct,uint16,OpenFlow,实践,header,ofp,交换机,实验,6633
From: https://www.cnblogs.com/Homoro-12345/p/16749249.html

相关文章

  • 实验3:OpenFlow协议分析实践
    拓扑文件抓包流程图1、hello55394向6633发送hello包,并且使用openflow1.06633向55394发送hello包,并且使用openflow1.02、features_request控制器6633端口(我需要......
  • 实验4:开源控制器实践——OpenDaylight
    一、实验要求1.利用Mininet平台搭建下图所示网络拓扑,并连接OpenDaylight控制器命令行连接控制器sudomn--topo=single,3--controller=remote,ip=127.0.0.1,port=6633......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。hello控制器6633端口(我最高能支持OpenFl......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求hello控制器6633端口--->交换机35534端口交换机35534端口--->控制器6633端口FeaturesRequest控制器6633端口--->交换机35534端口SetConig控制......
  • openflow协议分析实践
    实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。实验环境Ubuntu2......
  • 实验3:OpenFlow协议分析实践
    基础要求:1.hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机47646端口交换机47646端口(我最高能支持OpenFlow1.0)--->控制器6633端口于是双方建立连接,并......
  • OpenFlow协议协议分析实践
    一、基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.查看抓包结果,分析OpenFlow协议中交......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • 实验三:Openflow协议分析实践
    一、基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.查看抓包结果,分析OpenFlow协议中......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......