首页 > 其他分享 >openflow协议分析实践

openflow协议分析实践

时间:2022-10-06 11:02:04浏览次数:49  
标签:协议 控制器 struct openflow 端口 实践 header ofp 交换机

(一)基本要求

  1. 搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。

  2. 查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

  • hello
    控制器6633端口(我最高能支持OpenFlow 1.0) ----> 交换机58984端口

    交换机58984端口(我最高能支持OpenFlow 1.0) ----> 控制器6633端口

    于是双方建立连接,并使用 OpenFlow 1.0
  • Features Request / Set Config
    控制器6633端口(我需要你的特征信息)----> 交换机58984端口

    控制器6633端口(请按照我给你的flag和max bytes of packet进行配置)----> 交换机58984端口
  • Port_Status
    当交换机端口发生变化时,告知控制器相应的端口状态。
  • Features Reply
    交换机58984端口(这是我的特征信息,请查收)----> 控制器6633端口
  • Packet_in
    交换机58984端口(有数据进来,请指示) ----> 控制器6633端口
  • Flow_mod(控制器收到 Packet-in 消息时的响应方式之一)
    控制器收到 Packet‐in 消息后,可以发送 Flow‐Mod 消息向交换机下发一个流表项
    分析抓取的flow_mod的数据包,控制器通过端口6633端口向交换机46568端口、交换机46570端口下发流表项,指导数据的转发处理

  • Packet_out(控制器收到 Packet-in 消息时的响应方式之一)
    控制器收到 Packet‐in 消息后,控制器不会下发流表,而是直接告诉交换机该如何做
    控制器6633端口(请按照我给你的action进行处理)----> 交换机58980端口
  • 交换机与控制器的消息交互过程
  1. 回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?
    交换机与控制器建立通信时是使用TCP协议。

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

  1. hello
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};


2. Features Request

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

  1. Set Config
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

  1. Port_Status
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

  1. Features Reply
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

  1. Packet_in
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

  1. Flow_mod
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

  1. Packet_out
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

(三)总结

  1. 建立拓扑前要先开启抓包工具,一开始没有开启导致hello找不到
  2. 相关数据结构可在openflow安装目录openflow/include/openflow当中的openflow.h头文件中查询到
  3. flow_mod要进行pingall才会出现,之前没有pingall找不到mod
  4. 经过本次实验,对抓包工具运用更加熟练,对openflow协议更进一步了解

标签:协议,控制器,struct,openflow,端口,实践,header,ofp,交换机
From: https://www.cnblogs.com/zcr20010123/p/16757179.html

相关文章

  • 实验3:OpenFlow协议分析实践
    1.基础要求a)/home/用户名/学号/lab3/目录下的拓扑文件b)wireshark抓包的结果截图和对应的文字说明Hello交换机46306端口(我最高能支持OpenFlow1.0)--->控制器6633端......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境......
  • 实验3:OpenFlow协议分析实践 实验1:SDN拓扑实践 实验2:Open vSwitch虚拟交换机实践
    实验3:OpenFlow协议分析实践 一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践 实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释......