关于堆栈的讲解(我见过的最经典的) 转载
转:https://blog.csdn.net/yingms/article/details/53188974
这是一篇转发的文章,我对他进行了格式化而已,原文出处不详。
一、预备知识—程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区—常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; //全局初始化区
int a = 0; //全局初始化区
char *p1; //全局未初始化区
main() {
int b; //栈
char s[] = "abc"; //栈
char *p2; //栈
char *p3 = "123456"; //123456\0在常量区,p3在栈上。
static int c = 0; //全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
//分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
123456789101112131415123456789101112131415123456789101112131415
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2 申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3 申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4 申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5 堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6 存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main() {
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
123456789123456789123456789
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
123456712345671234567
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。
三 、windows进程中的内存结构
在阅读本文之前,如果你连堆栈是什么多不知道的话,请先阅读文章后面的基础知识。
接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据。那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论。下文中的C语言代码如没有特别声明,默认都使用VC编译的release版。
首先,来了解一下 C 语言的变量是如何在内存分部的。C 语言有全局变量(Global)、本地变量(Local),静态变量(Static)、寄存器变量(Regeister)。每种变量都有不同的分配方式。先来看下面这段代码:
#include <stdio.h>
int g1=0, g2=0, g3=0;
int main()
{
static int s1=0, s2=0, s3=0;
int v1=0, v2=0, v3=0;
//打印出各个变量的内存地址
printf("0x%08x\n",&v1); //打印各本地变量的内存地址
printf("0x%08x\n",&v2);
printf("0x%08x\n\n",&v3);
printf("0x%08x\n",&g1); //打印各全局变量的内存地址
printf("0x%08x\n",&g2);
printf("0x%08x\n\n",&g3);
printf("0x%08x\n",&s1); //打印各静态变量的内存地址
printf("0x%08x\n",&s2);
printf("0x%08x\n\n",&s3);
return 0;
}
123456789101112131415161718123456789101112131415161718123456789101112131415161718
编译后的执行结果是:
0x0012ff78
0x0012ff7c
0x0012ff80
0x004068d0
0x004068d4
0x004068d8
0x004068dc
0x004068e0
0x004068e4
123456789101112345678910111234567891011
输出的结果就是变量的内存地址。其中v1,v2,v3是本地变量,g1,g2,g3是全局变量,s1,s2,s3是静态变量。你可以看到这些变量在内存是连续分布的,但是本地变量和全局变量分配的内存地址差了十万八千里,而全局变量和静态变量分配的内存是连续的。这是因为本地变量和全局/静态变量是分配在不同类型的内存区域中的结果。对于一个进程的内存空间而言,可以在逻辑上分成3个部份:代码区,静态数据区和动态数据区。动态数据区一般就是“堆栈”。“栈(stack)”和“堆(heap)”是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的“栈”,所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。一个堆栈可以通过“基地址”和“栈顶”地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址和偏移量来访问本地变量。
├———————┤低端内存区域
│ …… │
├———————┤
│ 动态数据区 │
├———————┤
│ …… │
├———————┤
│ 代码区 │
├———————┤
│ 静态数据区 │
├———————┤
│ …… │
├———————┤高端内存区域
123456789101112131412345678910111213141234567891011121314
堆栈是一个先进后出的数据结构,栈顶地址总是小于等于栈的基地址。我们可以先了解一下函数调用的过程,以便对堆栈在程序中的作用有更深入的了解。不同的语言有不同的函数调用规定,这些因素有参数的压入规则和堆栈的平衡。windows API的调用规则和ANSI C的函数调用规则是不一样的,前者由被调函数调整堆栈,后者由调用者调整堆栈。两者通过“__stdcall”和“__cdecl”前缀区分。先看下面这段代码:
#include <stdio.h>
void __stdcall func(int param1,int param2,int param3)
{
int var1=param1;
int var2=param2;
int var3=param3;
printf("0x%08x\n",param1); //打印出各个变量的内存地址
printf("0x%08x\n",param2);
printf("0x%08x\n\n",param3);
printf("0x%08x\n",&var1);
printf("0x%08x\n",&var2);
printf("0x%08x\n\n",&var3);
return;
}
int main() {
func(1,2,3);
return 0;
}
123456789101112131415161718191234567891011121314151617181912345678910111213141516171819
编译后的执行结果是:
0x0012ff78
0x0012ff7c
0x0012ff80
0x0012ff68
0x0012ff6c
0x0012ff70
123456712345671234567
├———————┤<—函数执行时的栈顶(ESP)、低端内存区域
│ …… │
├———————┤
│ var 1 │
├———————┤
│ var 2 │
├———————┤
│ var 3 │
├———————┤
│ RET │
├———————┤<—“__cdecl”函数返回后的栈顶(ESP)
│ parameter 1 │
├———————┤
│ parameter 2 │
├———————┤
│ parameter 3 │
├———————┤<—“__stdcall”函数返回后的栈顶(ESP)
│ …… │
├———————┤<—栈底(基地址 EBP)、高端内存区域
123456789101112131415161718192012345678910111213141516171819201234567891011121314151617181920
上图就是函数调用过程中堆栈的样子了。首先,三个参数以从右到左的次序压入堆栈,先压“param3”,再压“param2”,最后压入“param1”;然后压入函数的返回地址(RET),接着跳转到函数地址接着执行(这里要补充一点,介绍UNIX下的缓冲溢出原理的文章中都提到在压入RET后,继续压入当前EBP,然后用当前ESP代替EBP。然而,有一篇介绍windows下函数调用的文章中说,在windows下的函数调用也有这一步骤,但根据我的实际调试,并未发现这一步,这还可以从param3和var1之间只有4字节的间隙这点看出来);第三步,将栈顶(ESP)减去一个数,为本地变量分配内存空间,上例中是减去12字节(ESP=ESP-3*4,每个int变量占用4个字节);接着就初始化本地变量的内存空间。由于“__stdcall”调用由被调函数调整堆栈,所以在函数返回前要恢复堆栈,先回收本地变量占用的内存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前压入参数占用的内存(ESP=ESP+3*4),继续执行调用者的代码。参见下列汇编代码:
;--------------func 函数的汇编代码-------------------
:00401000 83EC0C sub esp, 0000000C //创建本地变量的内存空间
:00401003 8B442410 mov eax, dword ptr [esp+10]
:00401007 8B4C2414 mov ecx, dword ptr [esp+14]
:0040100B 8B542418 mov edx, dword ptr [esp+18]
:0040100F 89442400 mov dword ptr [esp], eax
:00401013 8D442410 lea eax, dword ptr [esp+10]
:00401017 894C2404 mov dword ptr [esp+04], ecx
……………………(省略若干代码)
:00401075 83C43C add esp, 0000003C ;恢复堆栈,回收本地变量的内存空间
:00401078 C3 ret 000C ;函数返回,恢复参数占用的内存空间
;如果是“__cdecl”的话,这里是“ret”,堆栈将由调用者恢复
;-------------------函数结束-------------------------
;--------------主程序调用func函数的代码--------------
:00401080 6A03 push 00000003 //压入参数param3
:00401082 6A02 push 00000002 //压入参数param2
:00401084 6A01 push 00000001 //压入参数param1
:00401086 E875FFFFFF call 00401000 //调用func函数
;如果是“__cdecl”的话,将在这里恢复堆栈,“add esp, 0000000C”
123456789101112131415161718192021222324251234567891011121314151617181920212223242512345678910111213141516171819202122232425
聪明的读者看到这里,差不多就明白缓冲溢出的原理了。先来看下面的代码:
#include <stdio.h>
#include <string.h>
void __stdcall func() {
char lpBuff[8]="\0";
strcat(lpBuff,"AAAAAAAAAAA");
return;
}
int main() {
func();
return 0;
}
123456789101112131234567891011121312345678910111213
编译后执行一下回怎么样?哈,“”0x00414141”指令引用的”0x00000000”内存。该内存不能为”read”。”,“非法操作”喽!”41”就是”A”的16进制的ASCII码了,那明显就是strcat这句出的问题了。”lpBuff”的大小只有8字节,算进结尾的\0,那strcat最多只能写入7个”A”,但程序实际写入了11个”A”外加1个\0。再来看看上面那幅图,多出来的4个字节正好覆盖了RET的所在的内存空间,导致函数返回到一个错误的内存地址,执行了错误的指令。如果能精心构造这个字符串,使它分成三部分,前一部份仅仅是填充的无意义数据以达到溢出的目的,接着是一个覆盖RET的数据,紧接着是一段shellcode,那只要这个RET地址能指向这段shellcode的第一个指令,那函数返回时就能执行shellcode了。但是软件的不同版本和不同的运行环境都可能影响这段shellcode在内存中的位置,那么要构造这个RET是十分困难的。一般都在RET和shellcode之间填充大量的NOP指令,使得exploit有更强的通用性。
├———————┤<—低端内存区域
│ …… │
├———————┤<—由exploit填入数据的开始
│ │
│ buffer │<—填入无用的数据
│ │
├———————┤
│ RET │<—指向shellcode,或NOP指令的范围
├———————┤
│ NOP │
│ …… │<—填入的NOP指令,是RET可指向的范围
│ NOP │
├———————┤
│ │
│ shellcode │
│ │
├———————┤<—由exploit填入数据的结束
│ …… │
├———————┤<—高端内存区域
123456789101112131415161718191234567891011121314151617181912345678910111213141516171819
windows下的动态数据除了可存放在栈中,还可以存放在堆中。了解C++的朋友都知道,C++可以使用new关键字来动态分配内存。来看下面的C++代码:
#include <stdio.h>
#include <iostream.h>
#include <windows.h>
void func()
{
char *buffer=new char[128];
char bufflocal[128];
static char buffstatic[128];
printf("0x%08x\n",buffer); //打印堆中变量的内存地址
printf("0x%08x\n",bufflocal); //打印本地变量的内存地址
printf("0x%08x\n",buffstatic); //打印静态变量的内存地址
}
void main() {
func();
return;
}
123456789101112131415161718123456789101112131415161718123456789101112131415161718
程序执行结果为:
0x004107d0
0x0012ff04
0x004068c0
123123123
可以发现用new关键字分配的内存即不在栈中,也不在静态数据区。VC编译器是通过windows下的“堆(heap)”来实现new关键字的内存动态分配。在讲“堆”之前,先来了解一下和“堆”有关的几个API函数:
- HeapAlloc 在堆中申请内存空间
- HeapCreate 创建一个新的堆对象
- HeapDestroy 销毁一个堆对象
- HeapFree 释放申请的内存
- HeapWalk 枚举堆对象的所有内存块
- GetProcessHeap 取得进程的默认堆对象
- GetProcessHeaps 取得进程所有的堆对象
- LocalAlloc
- GlobalAlloc
123456789123456789123456789
当进程初始化时,系统会自动为进程创建一个默认堆,这个堆默认所占内存的大小为1M。堆对象由系统进行管理,它在内存中以链式结构存在。通过下面的代码可以通过堆动态申请内存空间:
HANDLE hHeap=GetProcessHeap();
char *buff=HeapAlloc(hHeap,0,8);
121212
其中hHeap是堆对象的句柄,buff是指向申请的内存空间的地址。那这个hHeap究竟是什么呢?它的值有什么意义吗?看看下面这段代码吧:
#pragma comment(linker,"/entry:main") //定义程序的入口
#include <windows.h>
_CRTIMP int (__cdecl *printf)(const char *, ...); //定义STL函数printf
/*---------------------------------------------------------------------------
写到这里,我们顺便来复习一下前面所讲的知识:
(*注)printf函数是C语言的标准函数库中函数,VC的标准函数库由msvcrt.dll模块实现。
由函数定义可见,printf的参数个数是可变的,函数内部无法预先知道调用者压入的参数个数,函数只能通过分析第一个参数字符串的格式来获得压入参数的信息,由于这里参数的个数是动态的,所以必须由调用者来平衡堆栈,这里便使用了__cdecl调用规则。BTW,Windows系统的API函数基本上是__stdcall调用形式,只有一个API例外,那就是wsprintf,它使用__cdecl调用规则,同printf函数一样,这是由于它的参数个数是可变的缘故。
---------------------------------------------------------------------------*/
void main()
{
HANDLE hHeap=GetProcessHeap();
char *buff=HeapAlloc(hHeap,0,0x10);
char *buff2=HeapAlloc(hHeap,0,0x10);
HMODULE hMsvcrt=LoadLibrary("msvcrt.dll");
printf=(void *)GetProcAddress(hMsvcrt,"printf");
printf("0x%08x\n",hHeap);
printf("0x%08x\n",buff);
printf("0x%08x\n\n",buff2);
}
123456789101112131415161718192012345678910111213141516171819201234567891011121314151617181920
执行结果为:
0x00130000
0x00133100
0x00133118
123123123
hHeap的值怎么和那个buff的值那么接近呢?其实hHeap这个句柄就是指向HEAP首部的地址。在进程的用户区存着一个叫PEB(进程环境块)的结构,这个结构中存放着一些有关进程的重要信息,其中在PEB首地址偏移0x18处存放的ProcessHeap就是进程默认堆的地址,而偏移0x90处存放了指向进程所有堆的地址列表的指针。windows有很多API都使用进程的默认堆来存放动态数据,如windows 2000下的所有ANSI版本的函数都是在默认堆中申请内存来转换ANSI字符串到Unicode字符串的。对一个堆的访问是顺序进行的,同一时刻只能有一个线程访问堆中的数据,当多个线程同时有访问要求时,只能排队等待,这样便造成程序执行效率下降。
最后来说说内存中的数据对齐
。所位数据对齐,是指数据所在的内存地址必须是该数据长度的整数倍,DWORD数据的内存起始地址能被4除尽,WORD数据的内存起始地址能被2除尽,x86 CPU能直接访问对齐的数据,当他试图访问一个未对齐的数据时,会在内部进行一系列的调整,这些调整对于程序来说是透明的,但是会降低运行速度,所以编译器在编译程序时会尽量保证数据对齐。同样一段代码,我们来看看用VC、Dev-C++和lcc三个不同编译器编译出来的程序的执行结果:
#include <stdio.h>
int main()
{
int a;
char b;
int c;
printf("0x%08x\n",&a);
printf("0x%08x\n",&b);
printf("0x%08x\n",&c);
return 0;
}
123456789101112123456789101112123456789101112
这是用VC编译后的执行结果:
0x0012ff7c
0x0012ff7b
0x0012ff80
123123123
变量在内存中的顺序:b(1字节)-a(4字节)-c(4字节)。
这是用Dev-C++编译后的执行结果:
0x0022ff7c
0x0022ff7b
0x0022ff74
123123123
变量在内存中的顺序:c(4字节)-中间相隔3字节-b(占1字节)-a(4字节)。
这是用lcc编译后的执行结果:
0x0012ff6c
0x0012ff6b
0x0012ff64
123123123
变量在内存中的顺序:同上。
三个编译器都做到了数据对齐,但是后两个编译器显然没VC“聪明”,让一个char占了4字节,浪费内存哦。
基础知识:
堆栈是一种简单的数据结构,是一种只允许在其一端进行插入或删除的线性表。允许插入或删除操作的一端称为栈顶,另一端称为栈底,对堆栈的插入和删除操作被称为入栈和出栈。有一组CPU指令可以实现对进程的内存实现堆栈访问。其中,POP指令实现出栈操作,PUSH指令实现入栈操作。CPU的ESP寄存器存放当前线程的栈顶指针,EBP寄存器中保存当前线程的栈底指针。CPU的EIP寄存器存放下一个CPU指令存放的内存地址,当CPU执行完当前的指令后,从EIP寄存器中读取下一条指令的内存地址,然后继续执行。
121212
打开CSDN,阅读体验更佳
评论(8)
写评论
查看全部评论
精辟2021.12.23
jvm2021.06.16
char s[] = "abc";//“abc”在常量区吧?2021.05.08
好文2021.04.28
谢谢,很有用。辛苦啦2021.04.14
感谢分享。2020.07.19
static int c = 0; //全局(静态)初始化区
这个不对吧?应为局部静态变量。2019.05.27
1回复concrete mathematic:作者是意思是 这个变量存在静态初始化区 但是这个区域也是全局变量存放的地方2020.03.19
嵌入式开发中的堆与栈
关注、星标公众号,直达精彩内容文章内容出处:网路素材整理:李肖遥0.前言堆(Heap)与栈(Stack)是开发人员必须面对的两个概念,在理解这两个概念时,需要放到具体的场景下,因为不同场景下,堆与栈代表不同的含义。一般情况下,有两层含义:(1)程序内存布局场景下,堆与栈表示两种内存管理方式;(2)数据结构场景下,堆与栈表示两种常用的数据结构。1.程序内存分区中的堆...继续访问
堆栈的详解
<br />堆 栈 程序 内存分配 详解<br />堆和栈的区别<br />一、预备知识—程序的内存分配<br /> 一个由c/C++编译的程序占用的内存分为以下几个部分<br /> 1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。<br /> 2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。<br /> 3、继续访问
步骤1:三个参数以从右到左的次序压入堆栈,先压“param3”,再压“param2”,最后压入“param1”; 步骤2:压入函数的返回地址(RET),接着跳转到函数地址接着执行; 步骤3:将栈顶(ESP)减去一个数,为本地变量分配内存空间,上例中是...
什么是堆、栈以及区别
首先栈和堆(托管堆)都存在于进程的虚拟内存中,什么是虚拟内存呢 虚拟内存是计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续的可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。 堆(Heap):是应用程序在运行的时候请求操作系统分配给自己内存,一般是申请/给予的过程,C/C++分别用malloc/New请求分配Heap,用free/delete销毁内存。由于从操作系...继续访问
堆栈概念(来自维基)
引言 使用维基百科需要注意一个地方,其自带的语言选择可以用,但不推荐。 比如,查看“CallStack”(调用栈)的百科,英文版本和中文版本完全不一样,建议阅读英文版本,直接或使用网页翻译进行阅读。 差异见下图(图一,中文百科;图二三,英文百科——网页翻译中文后): —————————————————中英文分隔线————————————————— —————————————以下来自维基百科CallStack条目—————————————...继续访问
堆栈
堆栈简称栈,是一种特殊的线性关系。只允许在一端进行插入操作和删除操作。本文主要介绍了如下内容: 一、介绍了什么是堆栈以及堆栈的五种基本操作; 二、介绍了堆栈的顺序存储结构和基本操作的C语言实现,其中还设计多栈共享连续空间问题。 三、介绍了堆栈的链式存储结构和基本操作的C语言实现。继续访问
堆栈详解
一 首先介绍下堆和堆栈(堆栈)的是什么,区别是什么? 注意,其实堆栈本身就是栈(stack)。通俗易懂说,堆栈==栈, 堆==堆(heap) 1.堆:什么是堆?又该怎么理解呢? 答:1,堆(heap)是一种数据结构,堆控制一段自己的存储空间,叫做堆空间。 2,堆是在程序运行时申请的动态内存,而不是在程序编译时,申请某个大小的内存空间。 3,堆是应用程序在运行的时候请求操作系统分配给自己内存,一般是申请/给予的过程。 2. 栈(堆栈):什么是堆栈?又该怎么理解呢? ...继续访问
一文详解堆栈(二)——内存堆与内存栈
前言:我们经常听见一个概念,堆(heap)和栈(stack),其实在数据结构中也有同样的这两个概念,但是这和内存的堆栈是不一样的东西哦,本文也会说明他们之间的区别的,另外,本文的只是是以C/C++为背景来说明,不同的语言在内存管理上面会有区别。本文是第二篇,介绍内存中的堆与栈。 一、C++中的内存概述 1.1 内存的分类标准——五分类 在C++中,内存分成5个区,他们分别是堆,栈,自...继续访问
操作系统,堆栈(stack),堆(heap),详解
/* 在学习了关于系统堆和栈的一些原理后,发表一下自己的看法与理解,希望能帮助到其他人。(红色为重点)*/ 一 首先介绍下堆和堆栈(堆栈)的是什么,区别是什么? 注意,其实堆栈本身就是栈(stack)。通俗易懂说,堆栈==栈, 堆==堆(heap) 1.堆:什么是堆?又该怎么理解呢? 答:1,堆(heap)是一种数据结构,堆控制一段自己的存储空间,叫做堆空间。 2...继续访问
关于堆栈的详解
在计算机领域,堆栈是一个不容忽视的概念,堆栈是两种数据结构。 堆栈都是一种数据项按序排列的数据结构,只能在一端(称为栈顶(top))对数据项进行插入和删除。 要点: 堆,列队优先,先进先出。 栈,先进后出(First-In/Last-Out)。 栈(操作系统): 在函数调用时,在大多数的C编译器中,继续访问
js笔记11-堆栈空间
文章目录1.栈空间2.堆空间篇章 1.栈空间 栈空间:一些基本数据类型会很进入同一个空间。 在书写代码的时候,代码会存储到计算机内存当中。 栈空间依据的是基本类型的数值,如果基本数据类型的值相同,那么基本数据类型就会存储在栈空间中。 是否相等?相等。所以,结果为真。 <script> var a=10; var b=10; console.log(a==b); </script> 总结:10是基本数据类型中的数字类型,所以它是存储在堆空间的。继续访问
什么是堆栈,堆和栈到底是不是一个概念
堆栈(其实就是栈)的概念: 看过很多关于堆和栈的帖子,但仍然一知半解。可能是智商不够用,o(╥﹏╥)o。写写自己的总结吧,怕以后忘了。 以下摘自维基百科。 堆栈(英语:stack)又称为栈或堆叠,是计算机科学中一种特殊的串列形式的抽象数据类型,其特殊之处在于只能允许在链表或数组的一端(称为堆栈顶端指针,英语:top)进行加入数据(英语:push)和输出数据(英语:pop)的运算。另外堆栈也可以用一...继续访问
内存、数据结构之栈和堆的区别?
网上有一篇很好的文章,我差不多直接搬运过来了。 来源:http://www.cleey.com/blog/single/id/776.html 原文如下: 可能很多同学在这个概念上有些模糊,其实堆栈分为数据结构和内存的。数据结构的堆栈我想很多同学学习过,今天介绍下数据结构的堆栈,但是重点是内存的堆栈整理。 数据结构的栈和堆 首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上继续访问
单片机的堆和栈(Heap & Stack)详解
一、程序内存分配 由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(static)—,全局变量和静态...继续访问
理解堆栈及其利用方法
堆栈基础篇: 1、堆栈结构 从广义上来讲,堆栈其实就是一种后进先出的数据结构,这跟队列的作用正好相反, 你可以定义一个数组或用malloc分配一块内存来模拟堆栈的作用, 比如openjdk的解释器就要用到堆栈结构来做计算。 我们在从c的角度来仔细审视下堆栈的结构,本文以intel体系结构为例。 intel处理器定义了跟堆栈有关的几个寄存器: esp/rsp: 保存了当前堆栈栈顶指针的寄存器。 eb...继续访问
最新发布 什么是堆栈以及堆栈的区别
堆栈的概念以及区别继续访问
热门推荐 深入理解堆与栈
大多数操作系统会将内存空间分为内核空间和用户空间,而每个进程的内存空间又有如下的“默认”区域。 1、栈:栈用于维护函数调用的上下文,离开栈函数调用就会无法实现。栈通常在用户空间的最高地址处分配,通常有数兆字节。 2、堆:堆用来容纳应用程序动态分配的内存区域,我们使用malloc 或者new分配内存时,得到的内存来自堆里。堆通常存于栈的下方(低地址方向),堆一般比栈大很多,...继续访问
堆空间和栈空间
程序占用的内存: 栈空间 :由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈 。 堆空间 :一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。 全局区(静态区),全局变量和静态变量(静态全局变量和静态局部变量)的存储是放在一块,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后有系统释放 。 文字常量区—常量字符串就是放在这里的。 程..继续访问
发布于 2022-10-16 22:47 标签:char,变量,讲解,我见,内存,printf,堆栈,0x% From: https://www.cnblogs.com/sexintercourse/p/17764256.html