首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-10-06 00:23:24浏览次数:47  
标签:OFPT struct OpenFlow 端口 实践 header ofp 实验 message

一实验目的
1、能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
2、能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。
二、实验环境
Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求
1、搭建下图所示拓扑,完成相关 IP配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。

 

 

2.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

HELLO(控制器6633端口 ---> 交换机48996端口)

1.HELLO(交换机6633端口(我最高能支持OpenFlow 1.0) ---> 控制器48996端口)

 

2.Features Request(控制器6633端口(我需要你的特征信息) ---> 交换机48982端口)

 

3.Set Conig(控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机48982端口)

 

4.Port_Status(当交换机端口发生变化时,告知控制器相应的端口状态)

5.Features Reply(交换机48982端口(这是我的特征信息,请查收) ---> 控制器6633端口)

6.Packet_in
交换机48982端口(有数据包进来,请指示)--- 控制器6633端口

.

7.Flow_mod控制器通过6633端口向交换机48996端口、交换机44214端口下发流表项,指导数据的转发处理

8.Packet_out控制器6633端口向交换机48982端口发送数据,并告知交换机输出到65531端口。

查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图

 

回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义

OpenFlow主要消息类型

 

enum ofp_type {
    /* Immutable messages. */
    OFPT_HELLO,               /* Symmetric message */
    OFPT_ERROR,               /* Symmetric message */
    OFPT_ECHO_REQUEST,        /* Symmetric message */
    OFPT_ECHO_REPLY,          /* Symmetric message */
    OFPT_VENDOR,              /* Symmetric message */

    /* Switch configuration messages. */
    OFPT_FEATURES_REQUEST,    /* Controller/switch message */
    OFPT_FEATURES_REPLY,      /* Controller/switch message */
    OFPT_GET_CONFIG_REQUEST,  /* Controller/switch message */
    OFPT_GET_CONFIG_REPLY,    /* Controller/switch message */
    OFPT_SET_CONFIG,          /* Controller/switch message */

    /* Asynchronous messages. */
    OFPT_PACKET_IN,           /* Async message */
    OFPT_FLOW_REMOVED,        /* Async message */
    OFPT_PORT_STATUS,         /* Async message */

    /* Controller command messages. */
    OFPT_PACKET_OUT,          /* Controller/switch message */
    OFPT_FLOW_MOD,            /* Controller/switch message */
    OFPT_PORT_MOD,            /* Controller/switch message */

    /* Statistics messages. */
    OFPT_STATS_REQUEST,       /* Controller/switch message */
    OFPT_STATS_REPLY,         /* Controller/switch message */

    /* Barrier messages. */
    OFPT_BARRIER_REQUEST,     /* Controller/switch message */
    OFPT_BARRIER_REPLY,       /* Controller/switch message */

    /* Queue Configuration messages. */
    OFPT_QUEUE_GET_CONFIG_REQUEST,  /* Controller/switch message */
    OFPT_QUEUE_GET_CONFIG_REPLY     /* Controller/switch message */

};

Hello

/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};

features request源码参数格式与HELLO的一致

features reply

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

port_status

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

set_config

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

packet_in

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};
OFP_ASSERT(sizeof(struct ofp_packet_in) == 20);

packet_out

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};
OFP_ASSERT(sizeof(struct ofp_packet_out) == 16);

flow_mod

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};
OFP_ASSERT(sizeof(struct ofp_flow_mod) == 72);

  

 

 

  

三、总结

本次实验与上次实验相比,一个是先pingall再抓包,另一个是先抓包再pingall,在熟悉上次实验的过程之后实验做起来会比较容易。

 

 


 

 

标签:OFPT,struct,OpenFlow,端口,实践,header,ofp,实验,message
From: https://www.cnblogs.com/123456aabbssdd/p/16756861.html

相关文章

  • 实验3:OpenFlow协议分析实践
     一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机......
  • 实验3:OpenFlow协议分时实践
    基础实验抓包分析step1:搭建拓扑并配置相应IP代码:#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20.04......
  • python实验报告(第五周)
    一、实验目的和要求学会使用字符串的常用操作方法和正确应用正则表达式。二、实验环境软件版本:Python3.1064_bit三、实验过程1、实例1:使用字符串拼接输出一个关于程......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1、能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2、能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubunt......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.查看抓包结果,分析OpenFlow协议中交......
  • 实验3
    一、拓扑py文件:......................................................................................................................................................