首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-10-05 23:12:59浏览次数:49  
标签:struct OpenFlow 实践 uint8 header ofp uint16 实验 port

(一)基本要求

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。



2.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

HELLO(控制器6633端口 ---> 交换机56752端口)

HELLO(交换机56752端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口)

Features Request(控制器6633端口(我需要你的特征信息) ---> 交换机56752端口)

Set Conig(控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机56752端口)

Port_Status(当交换机端口发生变化时,告知控制器相应的端口状态)

Features Reply(交换机56752端口(这是我的特征信息,请查收) ---> 控制器6633端口)

Packet_in

Flow_mod


Packet_out

查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

3.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

HELLO

/* Header on all OpenFlow packets. */

struct ofp_header {
uint8_t version; /* OFP_VERSION. /
uint8_t type; /
One of the OFPT_ constants. /
uint16_t length; /
Length including this ofp_header. /
uint32_t xid; /
Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */
};

OFP_ASSERT(sizeof(struct ofp_header) == 8);

/* OFPT_HELLO. This message has an empty body, but implementations must

  • ignore any data included in the body, to allow for future extensions. */
    struct ofp_hello {
    struct ofp_header header;
    };

Features Request

/* Header on all OpenFlow packets. */

struct ofp_header {
uint8_t version; /* OFP_VERSION. /
uint8_t type; /
One of the OFPT_ constants. /
uint16_t length; /
Length including this ofp_header. /
uint32_t xid; /
Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

/* OFPT_HELLO. This message has an empty body, but implementations must

  • ignore any data included in the body, to allow for future extensions. */
    struct ofp_hello {
    struct ofp_header header;
    };

set_config

/* Switch configuration. */

struct ofp_switch_config {
struct ofp_header header;
uint16_t flags; /* OFPC_* flags. /
uint16_t miss_send_len; /
Max bytes of new flow that datapath should
send to the controller. */
};

Port Staus

/* A physical port has changed in the datapath */

struct ofp_port_status {
struct ofp_header header;
uint8_t reason; /* One of OFPPR_*. /
uint8_t pad[7]; /
Align to 64-bits. */
struct ofp_phy_port desc;
};
OFP_ASSERT(sizeof(struct ofp_port_status) == 64);

Features Reply

/* Description of a physical port */

struct ofp_phy_port {
uint16_t port_no;
uint8_t hw_addr[OFP_ETH_ALEN];
char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

uint32_t config;        /* Bitmap of OFPPC_* flags. */
uint32_t state;         /* Bitmap of OFPPS_* flags. */

/* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
 * unsupported or unavailable. */
uint32_t curr;          /* Current features. */
uint32_t advertised;    /* Features being advertised by the port. */
uint32_t supported;     /* Features supported by the port. */
uint32_t peer;          /* Features advertised by peer. */

};
OFP_ASSERT(sizeof(struct ofp_phy_port) == 48);

/* Switch features. /
struct ofp_switch_features {
struct ofp_header header;
uint64_t datapath_id; /
Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are
implementer-defined. */

uint32_t n_buffers;     /* Max packets buffered at once. */

uint8_t n_tables;       /* Number of tables supported by datapath. */
uint8_t pad[3];         /* Align to 64-bits. */

/* Features. */
uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

/* Port info.*/
struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                  is inferred from the length field in
                                  the header. */

};

Packet_in

交换机查找流表,没有匹配条目

/* Why is this packet being sent to the controller? */

enum ofp_packet_in_reason {
OFPR_NO_MATCH, /* No matching flow. /
OFPR_ACTION /
Action explicitly output to controller. */
};

有匹配条目但是对应的action是OUTPUT=CONTROLLER时

/* Packet received on port (datapath -> controller). */

struct ofp_packet_in {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath. /
uint16_t total_len; /
Full length of frame. /
uint16_t in_port; /
Port on which frame was received. /
uint8_t reason; /
Reason packet is being sent (one of OFPR_*) /
uint8_t pad;
uint8_t data[0]; /
Ethernet frame, halfway through 32-bit word,
so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof(struct ofp_packet_in, data) ==
sizeof(struct ofp_packet_in) - 2. */
};

Flow_mod

/* Fields to match against flows */

struct ofp_match {
uint32_t wildcards; /* Wildcard fields. /
uint16_t in_port; /
Input switch port. /
uint8_t dl_src[OFP_ETH_ALEN]; /
Ethernet source address. /
uint8_t dl_dst[OFP_ETH_ALEN]; /
Ethernet destination address. /
uint16_t dl_vlan; /
Input VLAN id. /
uint8_t dl_vlan_pcp; /
Input VLAN priority. /
uint8_t pad1[1]; /
Align to 64-bits /
uint16_t dl_type; /
Ethernet frame type. /
uint8_t nw_tos; /
IP ToS (actually DSCP field, 6 bits). /
uint8_t nw_proto; /
IP protocol or lower 8 bits of
* ARP opcode. /
uint8_t pad2[2]; /
Align to 64-bits /
uint32_t nw_src; /
IP source address. /
uint32_t nw_dst; /
IP destination address. /
uint16_t tp_src; /
TCP/UDP source port. /
uint16_t tp_dst; /
TCP/UDP destination port. /
};
/
Flow setup and teardown (controller -> datapath). /
struct ofp_flow_mod {
struct ofp_header header;
struct ofp_match match; /
Fields to match /
uint64_t cookie; /
Opaque controller-issued identifier. */

/* Flow actions. */
uint16_t command;             /* One of OFPFC_*. */
uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
uint16_t hard_timeout;        /* Max time before discarding (seconds). */
uint16_t priority;            /* Priority level of flow entry. */
uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                 Not meaningful for OFPFC_DELETE*. */
uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                 matching entries to include this as an
                                 output port.  A value of OFPP_NONE
                                 indicates no restriction. */
uint16_t flags;               /* One of OFPFF_*. */
struct ofp_action_header actions[0]; /* The action length is inferred
                                        from the length field in the
                                        header. */

};

Packet_out

/* Action header that is common to all actions. The length includes the

  • header and any padding used to make the action 64-bit aligned.
  • NB: The length of an action must always be a multiple of eight. /
    struct ofp_action_header {
    uint16_t type; /
    One of OFPAT_*. /
    uint16_t len; /
    Length of action, including this
    header. This is the length of action,
    including any padding to make it
    64-bit aligned. */
    uint8_t pad[4];
    };
    OFP_ASSERT(sizeof(struct ofp_action_header) == 8);

/* Send packet (controller -> datapath). /
struct ofp_packet_out {
struct ofp_header header;
uint32_t buffer_id; /
ID assigned by datapath (-1 if none). /
uint16_t in_port; /
Packet's input port (OFPP_NONE if none). /
uint16_t actions_len; /
Size of action array in bytes. /
struct ofp_action_header actions[0]; /
Actions. /
/
uint8_t data[0]; / / Packet data. The length is inferred
from the length field in the header.
(Only meaningful if buffer_id == -1.) */
};

实验心得

标签:struct,OpenFlow,实践,uint8,header,ofp,uint16,实验,port
From: https://www.cnblogs.com/ZH0904/p/16756714.html

相关文章

  • 实验3
    一、拓扑py文件:......................................................................................................................................................
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验三OpenFlow协议分析实践
    (一)基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.查看抓包结果,分析OpenFlow协议中交......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    一、基础要求只需要提交导入到/home/用户名/学号/lab3/目录下的拓扑文件,wireshark抓包的结果截图和对应的文字说明;1.Hello控制器6633端口(我最高能支持OpenFlow1.0)--->......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ub......