Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning
2023 ICCV
*Siming Yan, Zhenpei Yang, Haoxiang Li, Chen Song, Li Guan, Hao Kang, Gang Hua, Qixing Huang*; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 14530-14542
- paper: [2201.00785] Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning (arxiv.org)
- code: [SimingYan/IAE: ICCV 2023] "Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning" (github.com)
Abstract
总结 :本文专注于autoencoder框架下的点云表示模型的性能优化,提出了sample-variant issue ,即不同采样(采样是因为网络处理体量限制,需要先对数据集中的数据进行降采样)引入的噪声不同,普通的autoencoder点云表示学习方法,例如Point-MAE拟合输入和重建点云保持完全一致,导致采样中的噪声一定程度上也影响到的了encoder输出的latent code,降低了对同一目标的不同点云的语义表示一致性,换句话说: limiting the model's ability to extract valuable information about the true 3D geometry。作者基于这一点提出了对于decoder的优化,decoder原来是重建点云数据,作者换为重建输入点云的隐式表示 (SDF、UDF、occupancy grid),并且原来的Loss函数(Chamfer Distance Loss,Earth Mover`s Distance)替换为:将重建的隐式表示,和输入点云计算得到的隐式表示之间的L1 distance(for SDF,UDF),或者cross entropy(for occupancy grid)。Loss替换还有一个好处在于大大降低了计算复杂度,使得输入点云的点数能够大大增多,论文中表明点数能从1k左右 -> 40k,在tesla V100的GPU加持下
标签:采样,Autoencoder,Point,Self,Implicit,点云,隐式 From: https://www.cnblogs.com/name555difficult/p/17753300.html