首页 > 其他分享 >SWERC 2022-2023 - Online Mirror (Unrated, ICPC Rules, Teams Preferred)

SWERC 2022-2023 - Online Mirror (Unrated, ICPC Rules, Teams Preferred)

时间:2023-10-04 20:55:10浏览次数:45  
标签:std const Rules Preferred int Mirror return include mx

Preface

纯纯的智商场,只能说老外的出题风格和国内的比赛差异还是挺大的

这场开局被签到题H反杀后灰溜溜地下机,结果后面的题出的都还挺顺的

等到最后徐神把J过掉后我们都以为D是个大分类讨论(实际上机房里的学长们都是用分类讨论过的),就不想写了挂机到结束

后面看题解发现确实是分类讨论,但民间做法有一个更加好写的贪心做法,而且简单到让人怀疑人生,我直接呃呃


A. Walking Boy

签到

#include<cstdio>
#include<iostream>
#define RI register int
#define CI const int&
using namespace std;
const int N=105;
int t,n,a[N];
int main()
{
	//freopen("A.in","r",stdin); freopen("A.out","w",stdout);
	for (scanf("%d",&t);t;--t)
	{
		RI i; for (scanf("%d",&n),i=1;i<=n;++i) scanf("%d",&a[i]);
		int c=(a[1]/120)+((1440-a[n])/120);
		for (i=2;i<=n;++i) c+=(a[i]-a[i-1])/120;
		puts(c>=2?"YES":"NO");
	}
	return 0;
}

B. Vittorio Plays with LEGO Bricks

貌似是个细节很多的区间DP的说,看着徐神从开场写到150min的时候才过

主要好像是要根据奇偶性进行讨论,因此会比较复杂,但由于不是我写的就不多赘述

#include <bits/stdc++.h>

using llsi = long long signed int;

int n, h, x[301];

struct pt { int x, y; };

std::vector<pt> fx(pt a, pt b) {
	if(a.x > b.x) std::swap(a, b);
	// int res = 0;
	if(a.y > b.y) a.x += a.y - b.y, a.y = b.y;
	else          b.x -= b.y - a.y, b.y = a.y;
	int cc = (b.x - a.x + 1) >> 1;
	a.y -= cc, b.y -= cc;
	a.x += cc, b.x -= cc;
	if(a.y < 0) return { {-1, 0} };
	if(a.x == b.x) return { a };
	return { a, b };
}

llsi dis(pt a, pt b) {
	if(a.y < b.y) std::swap(a, b);
	if(b.y == 0) return a.y;
	if(std::abs(a.x - b.x) > a.y - b.y) return 2e18;
	return std::abs(a.y - b.y);
}

llsi dp[301][301][2];
pt dcrs[301][301][2];

void updmn(llsi &a, const llsi &b) {
	if(b < a) a = b;
}

int main() {
	// freopen("3.in", "r", stdin);
	std::ios::sync_with_stdio(false);
//	for(auto [x, y]: fx({3, 5}, {5, 4})) std::cout << x << ' ' << y << char(10);
//	return 0;
	std::cin >> n >> h;
	for(int i = 1; i <= n; ++i) std::cin >> x[i];
	memset(dp, 0x1f, sizeof dp);
	for(int i = 1; i <= n; ++i) dp[i][i][0] = 0, dcrs[i][i][0] = {x[i], h};
	for(int l = 2; l <= n; ++l) for(int i = 1; i + l - 1 <= n; ++i) {
		int j = i + l - 1;
		auto crs = fx({x[i], h}, {x[j], h});
		for(size_t k = 0; k < crs.size(); ++k) dcrs[i][j][k] = crs[k];
		for(int k = i; k < j; ++k) {
			for(size_t wl = 0; wl < 2; ++wl) if(dp[i    ][k][wl] < 1e15)
			for(size_t wr = 0; wr < 2; ++wr) if(dp[k + 1][j][wr] < 1e15)
			for(size_t wm = 0; wm < crs.size(); ++wm)
				updmn(dp[i][j][wm],
					dp[i    ][k][wl] + dis(dcrs[i    ][k][wl], crs[wm]) +
					dp[k + 1][j][wr] + dis(dcrs[k + 1][j][wr], crs[wm]) - 
					(crs[0].x >= 0));
		}
//		for(size_t k = 0; k < crs.size(); ++k) std::cout << '[' << i << ", " << j << ", " << k << "] = " << dp[i][j][k]
//			<< " (" << crs[k].x << " ," << crs[k].y << ")\n";
	}
	auto &[l, r] = dp[1][n];
	auto &[lp, rp] = dcrs[1][n];
	l += dis(lp, {0, 0}), r += dis(rp, {0, 0});
	std::cout << std::min(l, r) << std::endl;
	return 0;
}

C. Library game

很有意思的一个题,本来思路卡了但刚好听到银牌爷他们队喊了一个很关键的点就会了,什么窃听风云.jpg

首先可以将\(x_i\)从大到小排序,不难发现先手一定是从大到小取这些区间,考虑什么时候后手存在最优策略

根据手玩很容易发现,若存在\(i\in[1,n]\)使得\(x_i\times i>m\),则我们可以用如下方法来构造一组后手获胜的方案

对于所有的\(j\in[1,m]\and x_i|j\)的位置,我们将其标记为关键点,不难发现关键点的数目为\(i-1\)

由于有\(i\)个区间的长度都\(\ge x_i\),那么这些区间一定会至少覆盖到一个关键点,而根据抽屉原理此时一定有某个关键点被覆盖两次,则后手必胜

否则如果不存在这样的下标就选择先手即可,策略的话就是每次在剩下的区间里找一个长度\(\ge x_i\)且最小的区间即可

#include<cstdio>
#include<iostream>
#include<algorithm>
#define RI register int
#define CI const int&
using namespace std;
const int N=5005;
int n,m,x[N],y,a; bool vis[N];
int main()
{
	//freopen("C.in","r",stdin); freopen("C.out","w",stdout);
	RI i,j,k; for (scanf("%d%d",&n,&m),i=1;i<=n;++i) scanf("%d",&x[i]);
	sort(x+1,x+n+1,greater <int>()); int pos=-1;
	for (i=1;i<=n;++i) if (i*x[i]>m) { pos=i; break; }
	if (~pos)
	{
		printf("Bernardo\n"); fflush(stdout);
		for (i=1;i<=n;++i)
		{
			scanf("%d%d",&y,&a); bool flag=0;
			for (j=a;j<=a+y-1;++j) if (j%x[pos]==0)
			{
				printf("%d\n",j); fflush(stdout); flag=1; break;
			}
			if (!flag) printf("%d\n",a),fflush(stdout);
		}
	} else
	{
		printf("Alessia\n"); fflush(stdout);
		for (i=1;i<=n;++i)
		{
			int pos,mi=1e9;
			for (j=1;j<=m;)
			{
				if (vis[j]) { ++j; continue; }
				for (k=j;k<=m&&!vis[k];++k);
				if (k-j>=x[i]&&k-j<mi) pos=j,mi=k-j; j=k; 
			}
			printf("%d %d\n",x[i],pos); fflush(stdout);
			scanf("%d",&y); vis[y]=1;
		}
	}
	return 0;
}

D. Teamwork

比赛的时候祁神讨论了很多种情况,然后我们都认为是个分类讨论题遂最后弃疗了,后面看到一种贪心的做法才恍然大悟

考虑按照如下的贪心策略考虑,先优先保证每个时刻都有人在写题

然后我们发现如果某个时刻我们可以选择做难题的话,那么把难题换成简单题或者中等题也是可以的,所以我们优先做难度大的题

同时选谁来做也是个问题,我们发现如果找一个完成上道题的时间和当前时刻最接近的人来做都可以完成这道题的话,话别人来肯定也是可以的,因此我们优先找间隔时间最小的人

然后按照这个策略来做即可,复杂度\(O(l\times 3\times 3)\)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<array>
#define RI register int
#define CI const int&
using namespace std;
struct ifo
{
	int id,tim;
	friend inline bool operator < (const ifo& A,const ifo& B)
	{
		return A.tim>B.tim;
	}
}o[3];
int l,c[5]; vector <array <int,3>> ans;
int main()
{
	//freopen("D.in","r",stdin); freopen("D.out","w",stdout);
	RI i,j,k; scanf("%d%d%d%d",&c[2],&c[3],&c[4],&l);
	o[0].id=1; o[1].id=2; o[2].id=3;
	for (i=1;i<=l;++i)
	{
		for (sort(o,o+3),j=4;j>=2;--j)
		{
			if (!c[j]) continue; bool flag=0;
			for (k=0;k<3&&!flag;++k) if (i-o[k].tim>=j)
			ans.push_back({o[k].id,i-j,i}),o[k].tim=i,--c[j],flag=1;
			if (flag) break;
		}
	}
	printf("%d\n",ans.size());
	for (auto [id,l,r]:ans) printf("%d %d %d\n",id,l,r);
	return 0;
}

E. Crossing the Railways

防AK题,弃疗


F. Train Splitting

很有意思的图论构造题,感觉这题还挺有意思的但不知道为什么就被过穿了

首先不妨先求一个生成树出来,然后将其上的所有边都赋成颜色\(1\),然后考虑将剩下的边都赋成颜色\(2\)

但这里求生成树的时候有一个技巧,我们不希望剩下的颜色为\(2\)的边仍然可以构成生成树,因此不妨优先把某个点(钦定为\(1\)号点)的所有出边都加入生成树\(1\)中,这样剩下的边一定无法连接到\(1\)号点

然后由于还要满足\(1\)不连通整个图的限制,我们不妨枚举生成树\(1\)中的每条边,进行讨论:

  • 若修改这条边的颜色为\(2\)是否会构成\(2\)颜色的生成树,如果不会将其改为\(2\)就是答案
  • 否则将这条边的颜色改为\(3\)即可得到一组合法解,因为此时\((1,2),(2,3),(1,3)\)所有组合都可以连通整个边,而单独某个颜色就不能

总复杂度\(O(n+m)\),估计是由于checker的复杂度所以才出的现在的数据范围

#include<cstdio>
#include<iostream>
#define RI register int
#define CI const int&
using namespace std;
const int N=55;
int t,n,m,x[N*N],y[N*N],col[N*N];
struct DSU
{
	int fa[N];
	inline void init(CI n)
	{
		for (RI i=1;i<=n;++i) fa[i]=i;
	}
	inline int getfa(CI x)
	{
		return fa[x]!=x?fa[x]=getfa(fa[x]):x;
	}
	inline void merge(CI x,CI y)
	{
		fa[getfa(x)]=getfa(y);
	}
	inline bool query(CI x,CI y)
	{
		return getfa(x)==getfa(y);
	}
}S1,S2;
int main()
{
	//freopen("F.in","r",stdin); freopen("F.out","w",stdout);
	for (scanf("%d",&t);t;--t)
	{
		RI i,j; for (scanf("%d%d",&n,&m),i=1;i<=m;++i)
		if (scanf("%d%d",&x[i],&y[i]),col[i]=0,x[i]>y[i]) swap(x[i],y[i]);
		for (S1.init(n),i=1;i<=m;++i) if (x[i]==1) S1.merge(x[i],y[i]),col[i]=1;
		for (i=1;i<=m;++i) if (!col[i]&&!S1.query(x[i],y[i])) col[i]=1,S1.merge(x[i],y[i]);
		for (i=1;i<=m;++i) if (!col[i]) col[i]=2; int ans;
		for (S2.init(n),i=1;i<=m;++i) if (col[i]==1)
		{
			S2.merge(x[i],y[i]); bool flag=1;
			for (j=1;j<=m;++j) if (col[j]==2) S2.merge(x[j],y[j]);
			for (j=2;j<=n;++j) if (!S2.query(1,j)) flag=0;
			if (flag) ans=col[i]=3; else ans=col[i]=2; break;
		}
		for (printf("%d\n",ans),i=1;i<=m;++i) printf("%d%c",col[i]," \n"[i==m]);
	}
	return 0;
}

G. Another Wine Tasting Event

诈骗题,但仔细一看题目中的0.5ms好像就在暗示着这就是个\(O(n)\)的结论题

这题的结论其实很简单,对于所有的长度恰为\(n\)的区间,统计它们的W的个数,最后输出个数最多的那个区间对应的数即可

证明的话考虑设最后找到的区间为\([L,R]\),则对于任意\(l<L\),总能找到一个右端点\(r\)使得\([l,r]\)中W的个数与\([L,R]\)中的相等,在右边也同理,因此这样至少有\(n\)个区间符合要求

复杂度\(O(n)\)

#include<cstdio>
#include<iostream>
#define RI register int
#define CI const int&
using namespace std;
const int N=2e6+5;
int n,pfx[N]; char s[N];
int main()
{
	//freopen("G.in","r",stdin); freopen("G.out","w",stdout);
	RI i; for (scanf("%d%s",&n,s+1),i=1;i<=2*n-1;++i) pfx[i]=pfx[i-1]+(s[i]=='W');
	int ans=pfx[n]; for (i=n+1;i<=2*n-1;++i) ans=max(ans,pfx[i]-pfx[i-n]);
	return printf("%d",ans),0;
}

H. Beppa and SwerChat

签到失败,耻辱下机,祁神出手,直接顿悟

首先不妨把第一个排列对应的数映射成\(1,2,3\cdots\),然后再映射到第二个排列上

不难发现此时\(b_n\)对应的人一定可以被钦定为没有上线,考虑剩下不上线人数的最大值

手玩一下会发现其实就是从末尾向前的连续递减段的人可以不上线,直接扫一遍即可

#include<cstdio>
#include<iostream>
#define RI register int
#define CI const int&
using namespace std;
const int N=100005;
int t,n,a[N],b[N],f[N],pos[N];
int main()
{
	//freopen("H.in","r",stdin); freopen("H.out","w",stdout);
	for (scanf("%d",&t);t;--t)
	{
		RI i; for (scanf("%d",&n),i=1;i<=n;++i) scanf("%d",&a[i]),pos[a[i]]=i;
		for (i=1;i<=n;++i) scanf("%d",&b[i]),b[i]=pos[b[i]];
		for (i=n;i>1;--i) if (b[i-1]>b[i]) break;
		printf("%d\n",i-1);
	}
	return 0;
}

I. Spinach Pizza

几何博弈论,但是祁神很早之前做过,直接省下大量时间

结论就是偶数个点选先手,奇数个点选后手,然后每次操作选一个面积最小的角切下来即可,证明的话看Tutorial

#include<bits/stdc++.h>
#define int long long
using namespace std;

struct Pt{
	int x, y, id;	
	int crs(Pt b)const{return x*b.y-y*b.x;}
	Pt operator-(Pt b)const{return Pt{x-b.x, y-b.y};}
};

vector<Pt> vec;
void del(int x){
	for (auto it=vec.begin(); it!=vec.end(); ++it){
		if (it->id==x){
			vec.erase(it);
			break;
		}
	}
}

void out(){
	
	int sz=vec.size();
	int area=(vec[1]-vec[0]).crs(vec[sz-1]-vec[0]);
	int id=vec[0].id;
	for (int i=1; i<sz; ++i){
		int tmp = (vec[(i+1)%sz]-vec[i]).crs(vec[i-1]-vec[i]);
		if (tmp < area){
			area = tmp;
			id = vec[i].id;
		}
	}
	cout << id << endl;
	del(id);
	int x; cin >> x;
	del(x);
}

int n;
signed main(){
	cin >> n;
	vec.resize(n);
	for (int i=0; i<n; ++i){
		cin >> vec[i].x >> vec[i].y;
		vec[i].id = i+1;
	}
	if (n%2){
		cout << "Beatrice" << endl;
		int x; cin >> x;
		del(x);
		--n;
	}else cout << "Alberto" << endl;
	
	while (n>3){
		out();
		n-=2;
	}
	
	return 0;	
}

J. Italian Data Centers

ORZ徐神,轻松解决了高维立方体中的最短路,不愧是高维生物

注意到我们可以把每个数看作一个\(k\)长度的\(01\)串,同时会发现同色边连接的点不会影响每一位的取值,而异色边连接的点的状态相当于是按位取反

把每个点拆成正反两个点,跑Floyd求出两点间的最短距离,然后枚举两个点对,讨论中间不同的位的影响即可

复杂度\(O(n^3+n^2\times k)\)

#include <bits/stdc++.h>

using llsi = long long signed int;

constexpr int $n = 101 << 1;

int n, m, k, c[$n];
llsi dp[$n][$n];

int main() {
	// freopen("4.in", "r", stdin);
	std::ios::sync_with_stdio(false);
	std::cin >> n >> m >> k;
	for(int i = 1; i <= n; ++i) std::cin >> c[i];
	memset(dp, 0x1f, sizeof dp);
	for(int i = 1; i <= 2 * n; ++i) dp[i][i] = 0;
	for(int i = 1; i <= n; ++i) dp[i][i + n] = dp[i + n][i] = k;
	for(int i = 1, a, b; i <= m; ++i) {
		std::cin >> a >> b;
		if(c[a] == c[b])
			dp[a    ][b    ] = dp[b    ][a    ] = 1,
			dp[a + n][b + n] = dp[b + n][a + n] = 1;
		else
			dp[a    ][b + n] = dp[b + n][a    ] = 1,
			dp[a + n][b    ] = dp[b    ][a + n] = 1;
	}
	int dn = n << 1;
	for(int k = 1; k <= dn; ++k)
		for(int i = 1; i <= dn; ++i)
			for(int j = 1; j <= dn; ++j)
				dp[i][j] = std::min(dp[i][j], dp[i][k] + dp[k][j]);
	llsi ans = 0;
//	for(int i = 1; i <= dn; ++i) for(int j = 1; j <= dn; ++j)
//		std::cerr << dp[i][j] << char(j == dn ? 10 : 32);
	for(int i = 1; i <= n; ++i) for(int j = 1; j <= n; ++j) {
		for(int diff = 0; diff <= k; ++diff) {
			ans = std::max( ans, std::min({
				dp[i][j] + diff,
				dp[i][j + n] + (k - diff),
				dp[i + n][j] + (k - diff),
				dp[i + n][j + n] + diff
			}));
		}
	}
	std::cout << ans << std::endl;
	return 0;
}

K. Uniform Chemistry

概率题再加上\(10^{18}\),一眼不会做


L. Controllers

挺签的一个题,徐神开场写的,我题目都没看

#include <bits/stdc++.h>

using llsi = long long signed int;

inline llsi gcd(llsi a, llsi b) {
	return b ? gcd(b, a % b) : a;
}

int n, q;
llsi a, b, cp = 0, cm = 0;
std::string s;

int main() {
	// freopen("3.in", "r", stdin);
	std::ios::sync_with_stdio(false);
	std::cin >> n >> s;
	for(char &c: s) if(c == '+') cp += 1; else cm += 1;
	if(cp < cm) std::swap(cp, cm);
	std::cin >> q;
	while(q--) {
		std::cin >> a >> b;
		if(cp == cm) {
			std::cout << "YES\n";
			continue;
		}
		if(a == b) {
			std::cout << "NO\n";
			continue;
		}
		if(a > b) std::swap(a, b);
		
		const llsi gab = gcd(a, b), lab = a / gab * b;
		
		const llsi ca = lab / a, cb = lab / b, cd = (ca - cb);
		
		if((cp - cm) % cd) {
			std::cout << "NO\n";
			continue;
		}
		const llsi cc = (cp - cm) / cd;
		if(cp < cc * ca || cm < cc * cb) {
			std::cout << "NO\n";
			continue;
		}
		std::cout << "YES\n";
	}
	return 0;
}

M. Parmigiana With Seafood

很好奇这种人类智慧题是怎么出出来的,感觉看题解能勉强看懂,但完全不知道是怎么想到的

这题搞到最后就是个结论题,我们定义两个点\((x,y)\)为bad pair当且仅当它们之间的距离为奇数

定义三个点\((x,y,z)\)为bad triple当且仅当存在\(m\)使得在断开\(m\)后\(x,y,z\)不连通,并且\(m\)到\(x,y,z\)的距离均为偶数

然后最后得到以下结论:

  • 当\(n\)为偶数时,答案就是\(n\)
  • 当\(n\)为奇数时,答案就是满足以下限制的点中编号最大的那个:
    • 初始时就是叶子节点
    • 某个点\(x\)满足\((x,n)\)是bad pair
    • \(\min(x,y)\)对于任意的bad triple\((x,y,n)\)
    • \(\min(x,y,z)\)对于任意的bad triple\((x,y,z)\),且它们对应断开的点\(m\)为\(n\)

以上结论的得出以及证明可以看Tutorial,里面写的已经十分详尽了

最后实现的话就以\(n\)为根DFS一遍即可,分别讨论清楚上述条件即可

#include<cstdio>
#include<iostream>
#include<vector>
#define RI register int
#define CI const int&
using namespace std;
const int N=100005;
int n,x,y,dep[N],f[N][2],ans,ret,mx[3]; vector <int> v[N];
inline void DFS(CI now,CI fa)
{
	dep[now]=dep[fa]+1; f[now][0]=(v[now].size()>1?now:0);
	for (auto to:v[now]) if (to!=fa)
	DFS(to,now),f[now][0]=max(f[now][0],f[to][1]),f[now][1]=max(f[now][1],f[to][0]);
	if (dep[now]%2==1) ans=max(ans,now); else
	{
		ret=max(ret,now); int mx[2]={0,0};
		for (auto to:v[now]) if (to!=fa)
		{
			if (f[to][1]>mx[0]) mx[1]=mx[0],mx[0]=f[to][1];
			else if (f[to][1]>mx[1]) mx[1]=f[to][1];
		}
		ans=max(ans,mx[1]);
	}
}
int main()
{
	//freopen("M.in","r",stdin); freopen("M.out","w",stdout);
	RI i; for (scanf("%d",&n),i=1;i<n;++i)
	scanf("%d%d",&x,&y),v[x].push_back(y),v[y].push_back(x);
	if (n%2==0) return printf("%d\n",n),0;
	for (i=1;i<=n;++i) if (v[i].size()==1) ans=max(ans,i);
	for (auto to:v[n])
	{
		ret=0; DFS(to,n);
		if (ret>mx[0]) mx[2]=mx[1],mx[1]=mx[0],mx[0]=ret;
		else if (ret>mx[1]) mx[2]=mx[1],mx[1]=ret;
		else if (ret>mx[2]) mx[2]=ret;
	}
	return printf("%d",max(ans,mx[2])),0;
}

N. Count Permutations

好劲的计数题,话说杨表是什么,能吃吗?


Postscript

思维题我也写不来,套路题也写不来,这下可怎么办啊苦露西

标签:std,const,Rules,Preferred,int,Mirror,return,include,mx
From: https://www.cnblogs.com/cjjsb/p/17742728.html

相关文章

  • Vue进阶(幺捌肆):CodeMirror 应用小结
    (文章目录)一、前言CodeMirror支持在线编辑代码,风格包括js,java,php,c++等等100多种语言。能够做到代码自动补全,代码折叠,可配置键盘事件,支持vim,emacs,sublimetext编码风格、能完成查找替换,括号匹配,分栏显示,显示行号,自行配置字体大小和风格等。二、应用下载codemirror......
  • Angular inlineCriticalCss 和内部函数 walkStyleRules 介绍
    有一个客户启用了AngularServerSideRendering,并且启用了inlineCriticalCss,后来发现在Dynatrace的hotspot里的vendor.js文件有个名叫walkStyleRules的函数,耗时比较多。如下图所示:Angular服务器端渲染(ServerSideRendering)Angular的服务器端渲染是一种技术,允许在......
  • 10 Rules of Good and Bad Studying 学习的10条好与坏规则
    10RulesofGoodStudying良好学习的10条法则Userecall.Afteryoureadapage,lookawayandrecallthemainideas.Highlightverylittle,andneverhighlightanythingyouhaven’tputinyourmindfirstbyrecalling.Tryrecallingmainideaswhenyouare......
  • 关于Azure-4层-负载均衡器的-Inbound NAT rules-入站NAT规则-通信的数据包抓取-分析
    关于Azure-4层-负载均衡器的-InboundNATrules-入站NAT规则-通信的数据包-分析先说一下客户端-负载均衡器-真实的后端主机,环境信息如下:客户端的IP地址:192.168.20.4入站NAT前端IP:192.168.10.100后端服务器的IP :192.168.10.5+++++++++++++++++++++++++++++++++++++++++++......
  • Rules for good java.util.Timer use
    ManypeoplehaveprobablyusedTimerforsomequickone-offtimertaskswhereusingawholelibrarylikeQuartzdon’tmakesense.OnethingtobeawareofisthatTimer’sconstructorwillstartandspawnathread.Thisisarecipefor......
  • COMPFEST 15 - Preliminary Online Mirror (Unrated, ICPC Rules, Teams Preferred)
    Preface这场比赛本来想着周日晚上带着队友打一下的,但当天下午已经VP练了一场了晚上就休息了后面有时间大概花了5~6天的空闲时间才陆陆续续把这场补了,感觉题目还是不错的A.AmbitiousKid签到题,找一个数把它变成\(0\)即可#include<cstdio>#include<iostream>#include<utili......
  • The repository 'http://mirrors.163.com/debian jessie Release' does not have a Re
    设置Debian源为国内网易源tee/etc/apt/sources.list<<EOFdebhttp://mirrors.163.com/debian/jessiemainnon-freecontribdebhttp://mirrors.163.com/debian/jessie-updatesmainnon-freecontribEOF执行apt-getupdate出现报错root@d61378b9f12b:/#apt-getupda......
  • Placement Rules in SQL 使用案例
    作者:WalterWj使用背景为了减少跨机房流量使用,可以将一些不重要表设置为3副本且固定在主机房。拓扑确定使用非功能测试环境做测试,先确认当前拓扑:默认一共5副本,当前3副本会放在rack1/2/4,2副本放在rack3/5使用方法创建test.pr表Createtablepr(idintprimary......
  • jvs-rules(规则引擎)更新:新增功能介绍
    jvs-rules更新内容1.复合变量新增数据补充节点,实现请求回来的数据再以入参方式请求其他数据进行数据补充(例如通过参数A,请求回数据B,再以数据B为入参,请求回数据C)2.规则流结束节点支持新增、新建、引入变量;结束节点可直接选择或新增某个变量进行结果输出3.评分卡新增条件一键添加和导......
  • ceph-mirror
    1.环境要求集群名称集群版本storage01v17storage02v172.创建存储池全部集群操作cephosdpoolcreaterbd6464cephosdpoolapplicationenablerbdrbd3.开启mirror功能全部集群操作cephorchapplyrbd-mirror--placement=storage01/2......