首页 > 其他分享 >深度学习pytorch之线性回归实现

深度学习pytorch之线性回归实现

时间:2022-10-05 15:00:22浏览次数:66  
标签:reshape plt numpy grad torch pytorch 深度 线性 data

import torch
from matplotlib import pyplot as plt

# 损失率:
learn_rate = 0.1
# 训练数据
x = torch.rand([500,1])
y = 3*x + 0.8

# 参数
w = torch.rand([1,1],requires_grad=True)
b = torch.tensor(0,requires_grad=True,dtype=torch.float32)

for i in range(500):
    # 预测值
    y_predict = torch.matmul(x,w) + b
    # 算出标准差
    loss = (y-y_predict).pow(2).mean()
    # 调用backward()函数之前都要将梯度清零,因为如果梯度不清零,pytorch中会将上次计算的梯度和本次计算的梯度累加
    if w.grad is not None:
        w.grad.data.zero_()
    if b.grad is not None:
        b.grad.data.zero_()
    # 反向传播,更新参数
    loss.backward()
    w.data = w.data- learn_rate * w.grad
    b.data = b.data - learn_rate * b.grad
# 画图    
plt.figure(figsize=(20,8))
plt.scatter(x.numpy().reshape(-1),y.numpy().reshape(-1))
plt.plot(x.numpy().reshape(-1),y_predict.detach().numpy().reshape(-1),c="red")

  

标签:reshape,plt,numpy,grad,torch,pytorch,深度,线性,data
From: https://www.cnblogs.com/navysummer/p/16755592.html

相关文章