1、如何制作自己的图数据
import warnings
warnings.filterwarnings("ignore")
import torch
创建一个图,信息如下:
x是每个点的输入特征,y是每个点的标签
x = torch.tensor([[2,1], [5,6], [3,7], [12,0]], dtype=torch.float)
y = torch.tensor([0, 1, 0, 1], dtype=torch.float)
edge_index = torch.tensor([[0, 1, 2, 0, 3],#起始点
[1, 0, 1, 3, 2]], dtype=torch.long)#终止点
边的顺序定义无所谓的,上下两种是一样的
edge_index = torch.tensor([[0, 2, 1, 0, 3],
[3, 1, 0, 1, 2]], dtype=torch.long)
创建torch_geometric中的图
from torch_geometric.data import Data
x = torch.tensor([[2,1], [5,6], [3,7], [12,0]], dtype=torch.float)
y = torch.tensor([0, 1, 0, 1], dtype=torch.float)
edge_index = torch.tensor([[0, 2, 1, 0, 3],
[3, 1, 0, 1, 2]], dtype=torch.long)
data = Data(x=x, y=y, edge_index=edge_index)
data
Data(x=[4, 2], edge_index=[2, 5], y=[4])
2、故事是这样的
- 在很久很久以前,有一群哥们在淘宝一顿逛,最后可能买了一些商品
- yoochoose-clicks:表示用户的浏览行为,其中一个session_id就表示一次登录都浏览了啥东西
- item_id就是他所浏览的商品,其中yoochoose-buys描述了他最终是否购会买点啥呢,也就是咱们的标签
from sklearn.preprocessing import LabelEncoder
import pandas as pd
df = pd.read_csv('yoochoose-clicks.dat', header=None)
df.columns=['session_id','timestamp','item_id','category']
buy_df = pd.read_csv('yoochoose-buys.dat', header=None)
buy_df.columns=['session_id','timestamp','item_id','price','quantity']
item_encoder = LabelEncoder()
df['item_id'] = item_encoder.fit_transform(df.item_id)
df.head()
session_id | timestamp | item_id | category | |
---|---|---|---|---|
0 | 1 | 2014-04-07T10:51:09.277Z | 2053 | 0 |
1 | 1 | 2014-04-07T10:54:09.868Z | 2052 | 0 |
2 | 1 | 2014-04-07T10:54:46.998Z | 2054 | 0 |
3 | 1 | 2014-04-07T10:57:00.306Z | 9876 | 0 |
4 | 2 | 2014-04-07T13:56:37.614Z | 19448 | 0 |
import numpy as np
#数据有点多,咱们只选择其中一小部分来建模
sampled_session_id = np.random.choice(df.session_id.unique(), 100000, replace=False)
df = df.loc[df.session_id.isin(sampled_session_id)]
df.nunique()
session_id 100000
timestamp 357912
item_id 20243
category 117
dtype: int64
把标签也拿到手
df['label'] = df.session_id.isin(buy_df.session_id)
df.head()
session_id | timestamp | item_id | category | label | |
---|---|---|---|---|---|
316 | 89 | 2014-04-07T14:12:35.665Z | 6240 | 0 | False |
317 | 89 | 2014-04-07T14:12:51.832Z | 2230 | 0 | False |
1121 | 408 | 2014-04-02T11:39:52.556Z | 12239 | 0 | True |
1122 | 408 | 2014-04-02T11:39:59.933Z | 12239 | 0 | True |
1362 | 459 | 2014-04-03T17:32:50.791Z | 26433 | 0 | False |
3、接下来我们制作数据集
- 咱们把每一个session_id都当作一个图,每一个图具有多个点和一个标签
- 其中每个图中的点就是其item_id,特征咱们暂且用其id来表示,之后会做embedding
数据集制作流程
- 1.首先遍历数据中每一组session_id,目的是将其制作成(from torch_geometric.data import Data)格式
- 2.对每一组session_id中的所有item_id进行编码(例如15453,3651,15452)就按照数值大小编码成(2,0,1)
- 3.这样编码的目的是制作edge_index,因为在edge_index中我们需要从0,1,2,3.。。开始
- 4.点的特征就由其ID组成,edge_index是这样,因为咱们浏览的过程中是有顺序的比如(0,0,2,1)
- 5.所以边就是0->0,0->2,2->1这样的,对应的索引就为target_nodes: [0 2 1],source_nodes: [0 0 2]
- 6.最后转换格式data = Data(x=x, edge_index=edge_index, y=y)
- 7.最后将数据集保存下来(以后就不用重复处理了)
这部分代码就把中间过程打印出来,方便同学们理解
from torch_geometric.data import InMemoryDataset
from tqdm import tqdm
df_test = df[:100]
grouped = df_test.groupby('session_id')
i= 0
for session_id, group in tqdm(grouped):
i= i+ 1
print('session_id:',session_id)
sess_item_id = LabelEncoder().fit_transform(group.item_id) #6240和2230转换成1,0
print('sess_item_id:',sess_item_id)
group = group.reset_index(drop=True)
group['sess_item_id'] = sess_item_id
print('group:',group)
#node_features就是item_id
node_features = group.loc[group.session_id==session_id,['sess_item_id','item_id']].sort_values('sess_item_id').item_id.drop_duplicates().values
node_features = torch.LongTensor(node_features).unsqueeze(1)
print('node_features:',node_features)
target_nodes = group.sess_item_id.values[1:] #除了第1个
source_nodes = group.sess_item_id.values[:-1]#除了最后波1个
print('target_nodes:',target_nodes)
print('source_nodes:',source_nodes)
edge_index = torch.tensor([source_nodes, target_nodes], dtype=torch.long)
x = node_features
print("x",x)
y = torch.FloatTensor([group.label.values[0]])
print("y",y)
data = Data(x=x, edge_index=edge_index, y=y)
print('data:',data)
if i >3:
break
14%|███████████▊ | 3/21 [00:00<00:00, 66.33it/s]
session_id: 89
sess_item_id: [1 0]
group: session_id timestamp item_id category label sess_item_id
0 89 2014-04-07T14:12:35.665Z 6240 0 False 1
1 89 2014-04-07T14:12:51.832Z 2230 0 False 0
node_features: tensor([[2230],
[6240]])
target_nodes: [0]
source_nodes: [1]
x tensor([[2230],
[6240]])
y tensor([0.])
data: Data(x=[2, 1], edge_index=[2, 1], y=[1])
session_id: 408
sess_item_id: [0 0]
group: session_id timestamp item_id category label sess_item_id
0 408 2014-04-02T11:39:52.556Z 12239 0 True 0
1 408 2014-04-02T11:39:59.933Z 12239 0 True 0
node_features: tensor([[12239]])
target_nodes: [0]
source_nodes: [0]
x tensor([[12239]])
y tensor([1.])
data: Data(x=[1, 1], edge_index=[2, 1], y=[1])
session_id: 459
sess_item_id: [1 0 2 0 2 0 0]
group: session_id timestamp item_id category label sess_item_id
0 459 2014-04-03T17:32:50.791Z 26433 0 False 1
1 459 2014-04-03T17:39:07.398Z 17492 0 False 0
2 459 2014-04-03T17:40:16.246Z 43130 0 False 2
3 459 2014-04-03T17:40:26.514Z 17492 0 False 0
4 459 2014-04-03T17:40:35.374Z 43130 0 False 2
5 459 2014-04-03T17:40:46.581Z 17492 0 False 0
6 459 2014-04-03T17:40:59.556Z 17492 0 False 0
node_features: tensor([[17492],
[26433],
[43130]])
target_nodes: [0 2 0 2 0 0]
source_nodes: [1 0 2 0 2 0]
x tensor([[17492],
[26433],
[43130]])
y tensor([0.])
data: Data(x=[3, 1], edge_index=[2, 6], y=[1])
session_id: 482
sess_item_id: [0 0]
group: session_id timestamp item_id category label sess_item_id
0 482 2014-04-07T11:17:08.426Z 4855 0 False 0
1 482 2014-04-07T11:17:10.575Z 4855 0 False 0
node_features: tensor([[4855]])
target_nodes: [0]
source_nodes: [0]
x tensor([[4855]])
y tensor([0.])
data: Data(x=[1, 1], edge_index=[2, 1], y=[1])
from torch_geometric.data import InMemoryDataset
from tqdm import tqdm
"""
执行顺序:
(1)检查raw_file_names,是否却文件
(2)若缺少文件,下载download
(3)processed_file_names:检查self.processed_dir目录下是否存在self.processed_file_names属性方法返回的所有文件,没有就会走process
"""
class YooChooseBinaryDataset(InMemoryDataset):
def __init__(self, root, transform=None, pre_transform=None):
super(YooChooseBinaryDataset, self).__init__(root, transform, pre_transform) # transform就是数据增强,对每一个数据都执行
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self): #检查self.raw_dir目录下是否存在raw_file_names()属性方法返回的每个文件
#如有文件不存在,则调用download()方法执行原始文件下载
return []
@property
def processed_file_names(self): #检查self.processed_dir目录下是否存在self.processed_file_names属性方法返回的所有文件,没有就会走process
return ['yoochoose_click_binary_1M_sess.dataset']
def download(self):
pass
def process(self):
data_list = []
# process by session_id
grouped = df.groupby('session_id')
for session_id, group in tqdm(grouped):
sess_item_id = LabelEncoder().fit_transform(group.item_id)
group = group.reset_index(drop=True)
group['sess_item_id'] = sess_item_id
node_features = group.loc[group.session_id==session_id,['sess_item_id','item_id']].sort_values('sess_item_id').item_id.drop_duplicates().values
node_features = torch.LongTensor(node_features).unsqueeze(1)
target_nodes = group.sess_item_id.values[1:]
source_nodes = group.sess_item_id.values[:-1]
edge_index = torch.tensor([source_nodes, target_nodes], dtype=torch.long)
x = node_features
y = torch.FloatTensor([group.label.values[0]])
data = Data(x=x, edge_index=edge_index, y=y)
data_list.append(data)
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
dataset = YooChooseBinaryDataset(root='data/')
Processing...
100%|█████████████████████████████████████████████████████████████████████████| 100000/100000 [02:50<00:00, 586.85it/s]
Done!
4、API文档解释如下:
TopKPooling流程
- 其实就是对图进行剪枝操作,选择分低的节点剔除掉,然后再重新组合成一个新的图
构建网络模型
- 模型可以任选,这里只是举例而已
- 跟咱们图像中的卷积和池化操作非常类似,最后再全连接输出
embed_dim = 128
from torch_geometric.nn import TopKPooling,SAGEConv
from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp
import torch.nn.functional as F
class Net(torch.nn.Module): #针对图进行分类任务
def __init__(self):
super(Net, self).__init__()
self.conv1 = SAGEConv(embed_dim, 128)
self.pool1 = TopKPooling(128, ratio=0.8)
self.conv2 = SAGEConv(128, 128)
self.pool2 = TopKPooling(128, ratio=0.8)
self.conv3 = SAGEConv(128, 128)
self.pool3 = TopKPooling(128, ratio=0.8)
self.item_embedding = torch.nn.Embedding(num_embeddings=df.item_id.max() +10, embedding_dim=embed_dim)
self.lin1 = torch.nn.Linear(128, 128)
self.lin2 = torch.nn.Linear(128, 64)
self.lin3 = torch.nn.Linear(64, 1)
self.bn1 = torch.nn.BatchNorm1d(128)
self.bn2 = torch.nn.BatchNorm1d(64)
self.act1 = torch.nn.ReLU()
self.act2 = torch.nn.ReLU()
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch # x:n*1,其中每个图里点的个数是不同的
#print(x)
x = self.item_embedding(x)# n*1*128 特征编码后的结果
#print('item_embedding',x.shape)
x = x.squeeze(1) # n*128
#print('squeeze',x.shape)
x = F.relu(self.conv1(x, edge_index))# n*128
#print('conv1',x.shape)
x, edge_index, _, batch, _, _ = self.pool1(x, edge_index, None, batch)# pool之后得到 n*0.8个点
#print('self.pool1',x.shape)
#print('self.pool1',edge_index)
#print('self.pool1',batch)
#x1 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x1 = gap(x, batch)
#print('gmp',gmp(x, batch).shape) # batch*128
#print('cat',x1.shape) # batch*256
x = F.relu(self.conv2(x, edge_index))
#print('conv2',x.shape)
x, edge_index, _, batch, _, _ = self.pool2(x, edge_index, None, batch)
#print('pool2',x.shape)
#print('pool2',edge_index)
#print('pool2',batch)
#x2 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x2 = gap(x, batch)
#print('x2',x2.shape)
x = F.relu(self.conv3(x, edge_index))
#print('conv3',x.shape)
x, edge_index, _, batch, _, _ = self.pool3(x, edge_index, None, batch)
#print('pool3',x.shape)
#x3 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x3 = gap(x, batch)
#print('x3',x3.shape)# batch * 256
x = x1 + x2 + x3 # 获取不同尺度的全局特征
x = self.lin1(x)
#print('lin1',x.shape)
x = self.act1(x)
x = self.lin2(x)
#print('lin2',x.shape)
x = self.act2(x)
x = F.dropout(x, p=0.5, training=self.training)
x = torch.sigmoid(self.lin3(x)).squeeze(1)#batch个结果
#print('sigmoid',x.shape)
return x
from torch_geometric.loader import DataLoader
def train():
model.train()
loss_all = 0
for data in train_loader:
data = data
#print('data',data)
optimizer.zero_grad()
output = model(data)
label = data.y
loss = crit(output, label)
loss.backward()
loss_all += data.num_graphs * loss.item()
optimizer.step()
return loss_all / len(dataset)
model = Net()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
crit = torch.nn.BCELoss()
train_loader = DataLoader(dataset, batch_size=64)
for epoch in range(10):
print('epoch:',epoch)
loss = train()
print(loss)
epoch: 0
0.21383523407101632
epoch: 1
0.1923125632107258
epoch: 2
0.17628825497269632
epoch: 3
0.15730181092619896
epoch: 4
0.1406132375997305
epoch: 5
0.12482743380367756
epoch: 6
0.11302556532740593
epoch: 7
0.1032185257422924
epoch: 8
0.09486922759741545
epoch: 9
0.09064080653965473
from sklearn.metrics import roc_auc_score
def evalute(loader,model):
model.eval()
prediction = []
labels = []
with torch.no_grad():
for data in loader:
data = data#.to(device)
pred = model(data)#.detach().cpu().numpy()
label = data.y#.detach().cpu().numpy()
prediction.append(pred)
labels.append(label)
prediction = np.hstack(prediction)
labels = np.hstack(labels)
return roc_auc_score(labels,prediction)
for epoch in range(1):
roc_auc_score = evalute(dataset,model)
print('roc_auc_score',roc_auc_score)
roc_auc_score 0.9325659815540558
标签:基于,创建,self,torch,item,点击率,print,data,id
From: https://www.cnblogs.com/zhangxianrong/p/17729022.html