首页 > 其他分享 >3、自创建数据集:基于点击率预测

3、自创建数据集:基于点击率预测

时间:2023-09-25 22:35:10浏览次数:72  
标签:基于 创建 self torch item 点击率 print data id

1、如何制作自己的图数据

import warnings
warnings.filterwarnings("ignore")
import torch

创建一个图,信息如下:

image

x是每个点的输入特征,y是每个点的标签

x = torch.tensor([[2,1], [5,6], [3,7], [12,0]], dtype=torch.float)
y = torch.tensor([0, 1, 0, 1], dtype=torch.float)
edge_index = torch.tensor([[0, 1, 2, 0, 3],#起始点  
                           [1, 0, 1, 3, 2]], dtype=torch.long)#终止点

边的顺序定义无所谓的,上下两种是一样的

edge_index = torch.tensor([[0, 2, 1, 0, 3],
                           [3, 1, 0, 1, 2]], dtype=torch.long)

创建torch_geometric中的图

from torch_geometric.data import Data
 
x = torch.tensor([[2,1], [5,6], [3,7], [12,0]], dtype=torch.float)
y = torch.tensor([0, 1, 0, 1], dtype=torch.float)
 
edge_index = torch.tensor([[0, 2, 1, 0, 3],
                           [3, 1, 0, 1, 2]], dtype=torch.long)
 
data = Data(x=x, y=y, edge_index=edge_index)
data
Data(x=[4, 2], edge_index=[2, 5], y=[4])

2、故事是这样的

  • 在很久很久以前,有一群哥们在淘宝一顿逛,最后可能买了一些商品
  • yoochoose-clicks:表示用户的浏览行为,其中一个session_id就表示一次登录都浏览了啥东西
  • item_id就是他所浏览的商品,其中yoochoose-buys描述了他最终是否购会买点啥呢,也就是咱们的标签
from sklearn.preprocessing import LabelEncoder
import pandas as pd
 
df = pd.read_csv('yoochoose-clicks.dat', header=None)
df.columns=['session_id','timestamp','item_id','category']
buy_df = pd.read_csv('yoochoose-buys.dat', header=None)
buy_df.columns=['session_id','timestamp','item_id','price','quantity']
item_encoder = LabelEncoder()
df['item_id'] = item_encoder.fit_transform(df.item_id)
df.head()
session_id timestamp item_id category
0 1 2014-04-07T10:51:09.277Z 2053 0
1 1 2014-04-07T10:54:09.868Z 2052 0
2 1 2014-04-07T10:54:46.998Z 2054 0
3 1 2014-04-07T10:57:00.306Z 9876 0
4 2 2014-04-07T13:56:37.614Z 19448 0
import numpy as np
#数据有点多,咱们只选择其中一小部分来建模
sampled_session_id = np.random.choice(df.session_id.unique(), 100000, replace=False)
df = df.loc[df.session_id.isin(sampled_session_id)]
df.nunique()
session_id    100000
timestamp     357912
item_id        20243
category         117
dtype: int64

把标签也拿到手

df['label'] = df.session_id.isin(buy_df.session_id)
df.head()
session_id timestamp item_id category label
316 89 2014-04-07T14:12:35.665Z 6240 0 False
317 89 2014-04-07T14:12:51.832Z 2230 0 False
1121 408 2014-04-02T11:39:52.556Z 12239 0 True
1122 408 2014-04-02T11:39:59.933Z 12239 0 True
1362 459 2014-04-03T17:32:50.791Z 26433 0 False

3、接下来我们制作数据集

  • 咱们把每一个session_id都当作一个图,每一个图具有多个点和一个标签
  • 其中每个图中的点就是其item_id,特征咱们暂且用其id来表示,之后会做embedding

数据集制作流程

  • 1.首先遍历数据中每一组session_id,目的是将其制作成(from torch_geometric.data import Data)格式
  • 2.对每一组session_id中的所有item_id进行编码(例如15453,3651,15452)就按照数值大小编码成(2,0,1)
  • 3.这样编码的目的是制作edge_index,因为在edge_index中我们需要从0,1,2,3.。。开始
  • 4.点的特征就由其ID组成,edge_index是这样,因为咱们浏览的过程中是有顺序的比如(0,0,2,1)
  • 5.所以边就是0->0,0->2,2->1这样的,对应的索引就为target_nodes: [0 2 1],source_nodes: [0 0 2]
  • 6.最后转换格式data = Data(x=x, edge_index=edge_index, y=y)
  • 7.最后将数据集保存下来(以后就不用重复处理了)

这部分代码就把中间过程打印出来,方便同学们理解

from torch_geometric.data import InMemoryDataset
from tqdm import tqdm
df_test = df[:100]
grouped = df_test.groupby('session_id')
i= 0
for session_id, group in tqdm(grouped):
    i= i+ 1
    print('session_id:',session_id)
    sess_item_id = LabelEncoder().fit_transform(group.item_id) #6240和2230转换成1,0
    print('sess_item_id:',sess_item_id)
    group = group.reset_index(drop=True)
    group['sess_item_id'] = sess_item_id
    print('group:',group)
    #node_features就是item_id
    node_features = group.loc[group.session_id==session_id,['sess_item_id','item_id']].sort_values('sess_item_id').item_id.drop_duplicates().values
    node_features = torch.LongTensor(node_features).unsqueeze(1)
    print('node_features:',node_features)
    target_nodes = group.sess_item_id.values[1:] #除了第1个
    source_nodes = group.sess_item_id.values[:-1]#除了最后波1个
    print('target_nodes:',target_nodes)
    print('source_nodes:',source_nodes)
    edge_index = torch.tensor([source_nodes, target_nodes], dtype=torch.long)
    x = node_features
    print("x",x)
    y = torch.FloatTensor([group.label.values[0]])
    print("y",y)
    data = Data(x=x, edge_index=edge_index, y=y)
    print('data:',data)
    if i >3:
        break
 14%|███████████▊                                                                       | 3/21 [00:00<00:00, 66.33it/s]

session_id: 89
sess_item_id: [1 0]
group:    session_id                 timestamp  item_id category  label  sess_item_id
0          89  2014-04-07T14:12:35.665Z     6240        0  False             1
1          89  2014-04-07T14:12:51.832Z     2230        0  False             0
node_features: tensor([[2230],
        [6240]])
target_nodes: [0]
source_nodes: [1]
x tensor([[2230],
        [6240]])
y tensor([0.])
data: Data(x=[2, 1], edge_index=[2, 1], y=[1])
session_id: 408
sess_item_id: [0 0]
group:    session_id                 timestamp  item_id category  label  sess_item_id
0         408  2014-04-02T11:39:52.556Z    12239        0   True             0
1         408  2014-04-02T11:39:59.933Z    12239        0   True             0
node_features: tensor([[12239]])
target_nodes: [0]
source_nodes: [0]
x tensor([[12239]])
y tensor([1.])
data: Data(x=[1, 1], edge_index=[2, 1], y=[1])
session_id: 459
sess_item_id: [1 0 2 0 2 0 0]
group:    session_id                 timestamp  item_id category  label  sess_item_id
0         459  2014-04-03T17:32:50.791Z    26433        0  False             1
1         459  2014-04-03T17:39:07.398Z    17492        0  False             0
2         459  2014-04-03T17:40:16.246Z    43130        0  False             2
3         459  2014-04-03T17:40:26.514Z    17492        0  False             0
4         459  2014-04-03T17:40:35.374Z    43130        0  False             2
5         459  2014-04-03T17:40:46.581Z    17492        0  False             0
6         459  2014-04-03T17:40:59.556Z    17492        0  False             0
node_features: tensor([[17492],
        [26433],
        [43130]])
target_nodes: [0 2 0 2 0 0]
source_nodes: [1 0 2 0 2 0]
x tensor([[17492],
        [26433],
        [43130]])
y tensor([0.])
data: Data(x=[3, 1], edge_index=[2, 6], y=[1])
session_id: 482
sess_item_id: [0 0]
group:    session_id                 timestamp  item_id category  label  sess_item_id
0         482  2014-04-07T11:17:08.426Z     4855        0  False             0
1         482  2014-04-07T11:17:10.575Z     4855        0  False             0
node_features: tensor([[4855]])
target_nodes: [0]
source_nodes: [0]
x tensor([[4855]])
y tensor([0.])
data: Data(x=[1, 1], edge_index=[2, 1], y=[1])
from torch_geometric.data import InMemoryDataset
from tqdm import tqdm
"""
执行顺序:
(1)检查raw_file_names,是否却文件
(2)若缺少文件,下载download
(3)processed_file_names:检查self.processed_dir目录下是否存在self.processed_file_names属性方法返回的所有文件,没有就会走process
"""
class YooChooseBinaryDataset(InMemoryDataset):
    def __init__(self, root, transform=None, pre_transform=None):
        super(YooChooseBinaryDataset, self).__init__(root, transform, pre_transform) # transform就是数据增强,对每一个数据都执行
        self.data, self.slices = torch.load(self.processed_paths[0])
 
    @property
    def raw_file_names(self): #检查self.raw_dir目录下是否存在raw_file_names()属性方法返回的每个文件 
                              #如有文件不存在,则调用download()方法执行原始文件下载
        return []
    @property
    def processed_file_names(self): #检查self.processed_dir目录下是否存在self.processed_file_names属性方法返回的所有文件,没有就会走process
        return ['yoochoose_click_binary_1M_sess.dataset']
 
    def download(self):
        pass
    
    def process(self):
        
        data_list = []
 
        # process by session_id
        grouped = df.groupby('session_id')
        for session_id, group in tqdm(grouped):
            sess_item_id = LabelEncoder().fit_transform(group.item_id)
            group = group.reset_index(drop=True)
            group['sess_item_id'] = sess_item_id
            node_features = group.loc[group.session_id==session_id,['sess_item_id','item_id']].sort_values('sess_item_id').item_id.drop_duplicates().values
 
            node_features = torch.LongTensor(node_features).unsqueeze(1)
            target_nodes = group.sess_item_id.values[1:]
            source_nodes = group.sess_item_id.values[:-1]
 
            edge_index = torch.tensor([source_nodes, target_nodes], dtype=torch.long)
            x = node_features
 
            y = torch.FloatTensor([group.label.values[0]])
 
            data = Data(x=x, edge_index=edge_index, y=y)
            data_list.append(data)
        
        data, slices = self.collate(data_list)
        torch.save((data, slices), self.processed_paths[0])
dataset = YooChooseBinaryDataset(root='data/')
Processing...
100%|█████████████████████████████████████████████████████████████████████████| 100000/100000 [02:50<00:00, 586.85it/s]
Done!

4、API文档解释如下:

TopKPooling流程

  • 其实就是对图进行剪枝操作,选择分低的节点剔除掉,然后再重新组合成一个新的图

image

image

image

image

image

构建网络模型

  • 模型可以任选,这里只是举例而已
  • 跟咱们图像中的卷积和池化操作非常类似,最后再全连接输出
embed_dim = 128
from torch_geometric.nn import TopKPooling,SAGEConv
from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp
import torch.nn.functional as F
class Net(torch.nn.Module): #针对图进行分类任务
    def __init__(self):
        super(Net, self).__init__()
 
        self.conv1 = SAGEConv(embed_dim, 128)
        self.pool1 = TopKPooling(128, ratio=0.8)
        self.conv2 = SAGEConv(128, 128)
        self.pool2 = TopKPooling(128, ratio=0.8)
        self.conv3 = SAGEConv(128, 128)
        self.pool3 = TopKPooling(128, ratio=0.8)
        self.item_embedding = torch.nn.Embedding(num_embeddings=df.item_id.max() +10, embedding_dim=embed_dim)
        self.lin1 = torch.nn.Linear(128, 128)
        self.lin2 = torch.nn.Linear(128, 64)
        self.lin3 = torch.nn.Linear(64, 1)
        self.bn1 = torch.nn.BatchNorm1d(128)
        self.bn2 = torch.nn.BatchNorm1d(64)
        self.act1 = torch.nn.ReLU()
        self.act2 = torch.nn.ReLU()        
  
    def forward(self, data):
        x, edge_index, batch = data.x, data.edge_index, data.batch # x:n*1,其中每个图里点的个数是不同的
        #print(x)
        x = self.item_embedding(x)# n*1*128 特征编码后的结果
        #print('item_embedding',x.shape)
        x = x.squeeze(1) # n*128        
        #print('squeeze',x.shape)
        x = F.relu(self.conv1(x, edge_index))# n*128
        #print('conv1',x.shape)
        x, edge_index, _, batch, _, _ = self.pool1(x, edge_index, None, batch)# pool之后得到 n*0.8个点
        #print('self.pool1',x.shape)
        #print('self.pool1',edge_index)
        #print('self.pool1',batch)
        #x1 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
        x1 = gap(x, batch)
        #print('gmp',gmp(x, batch).shape) # batch*128
        #print('cat',x1.shape) # batch*256
        x = F.relu(self.conv2(x, edge_index))
        #print('conv2',x.shape)
        x, edge_index, _, batch, _, _ = self.pool2(x, edge_index, None, batch)
        #print('pool2',x.shape)
        #print('pool2',edge_index)
        #print('pool2',batch)
        #x2 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
        x2 = gap(x, batch)
        #print('x2',x2.shape)
        x = F.relu(self.conv3(x, edge_index))
        #print('conv3',x.shape)
        x, edge_index, _, batch, _, _ = self.pool3(x, edge_index, None, batch)
        #print('pool3',x.shape)
        #x3 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
        x3 = gap(x, batch)
        #print('x3',x3.shape)# batch * 256
        x = x1 + x2 + x3 # 获取不同尺度的全局特征
 
        x = self.lin1(x)
        #print('lin1',x.shape)
        x = self.act1(x)
        x = self.lin2(x)
        #print('lin2',x.shape)
        x = self.act2(x)      
        x = F.dropout(x, p=0.5, training=self.training)
 
        x = torch.sigmoid(self.lin3(x)).squeeze(1)#batch个结果
        #print('sigmoid',x.shape)
        return x
from torch_geometric.loader import DataLoader

def train():
    model.train()
 
    loss_all = 0
    for data in train_loader:
        data = data
        #print('data',data)
        optimizer.zero_grad()
        output = model(data)
        label = data.y
        loss = crit(output, label)
        loss.backward()
        loss_all += data.num_graphs * loss.item()
        optimizer.step()
    return loss_all / len(dataset)
    
model = Net()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
crit = torch.nn.BCELoss()
train_loader = DataLoader(dataset, batch_size=64)
for epoch in range(10):
    print('epoch:',epoch)
    loss = train()
    print(loss)
epoch: 0
0.21383523407101632
epoch: 1
0.1923125632107258
epoch: 2
0.17628825497269632
epoch: 3
0.15730181092619896
epoch: 4
0.1406132375997305
epoch: 5
0.12482743380367756
epoch: 6
0.11302556532740593
epoch: 7
0.1032185257422924
epoch: 8
0.09486922759741545
epoch: 9
0.09064080653965473
from  sklearn.metrics import roc_auc_score

def evalute(loader,model):
    model.eval()

    prediction = []
    labels = []

    with torch.no_grad():
        for data in loader:
            data = data#.to(device)
            pred = model(data)#.detach().cpu().numpy()

            label = data.y#.detach().cpu().numpy()
            prediction.append(pred)
            labels.append(label)
    prediction =  np.hstack(prediction)
    labels = np.hstack(labels)

    return roc_auc_score(labels,prediction) 
for epoch in range(1):
    roc_auc_score = evalute(dataset,model)
    print('roc_auc_score',roc_auc_score)
roc_auc_score 0.9325659815540558

标签:基于,创建,self,torch,item,点击率,print,data,id
From: https://www.cnblogs.com/zhangxianrong/p/17729022.html

相关文章

  • 华为datacom-HCIA​ 华为datacom-HCIA 1​ 1. 第四弹 5​ 1.1. OSPF认证 5​ 1.1.1.
    华为datacom-HCIA华为datacom-HCIA11.第四弹51.1.OSPF认证51.1.1.基于接口认证51.1.1.1.接口认证更优先61.1.1.2.[R2]interfaceg0/0/161.1.1.3.[R2-g0/0/1]ospfauthentication-modesimplehuawei61.1.1.3.1.明文认证61.1.1.4.[R2-g0/0/1]ospfauthentication-mo......
  • Spring Security 基于 JWT Token 的接口安全控制
    现在的网站开发,基本上都是前后端分离,后端提供api接口并进行权限控制。使用SpringSecurity框架可以大大简化权限控制的代码实现。对于后端接口而言,为了能够实现多节点负载均衡部署,更好的方案是不再使用Session了,绝大多数情况下,通过提交JWTToken来进行身份认证。本篇博客......
  • 基于Vgg16和Vgg19深度学习网络的步态识别系统matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本MATLAB2022A 3.算法理论概述       步态识别作为生物特征识别领域的一个重要分支,在人体运动分析、身份验证、健康监测等方面具有广泛的应用前景。步态能量图(GaitEnergyImage,简称GEI)是一种有效的步态表示方法,通过......
  • 亚信科技AntDB数据库与优逸派科技基于人工智能的自动化运维管理平台产品完成兼容性互
    日前,亚信科技AntDB数据库与北京优逸派科技有限公司基于人工智能的自动化运维管理平台产品完成兼容互认。经过双方团队的严格测试,AntDB数据库与基于人工智能的自动化运维管理平台产品完全兼容,整体运行稳定高效。图1:亚信科技AntDB数据库与优逸派科技完成适配随着我国数字经济建设......
  • GPU创建聊天GPT
    新建项目:然后上传代码压缩包。点击进入开发环境pipinstall-rChatGLM2-6B/requirements.txt-ihttps://pypi.virtaicloud.com/repository/pypi/simple加载模型pythonChatGLM2-6B/cli_demo.py......
  • Sentienl基于Jdk17版本运行出错:java.lang.IllegalStateException: Cannot load config
    java.lang.IllegalStateException:Cannotloadconfigurationclass:com.alibaba.csp.sentinel.dashboard.DashboardApplicationatorg.springframework.context.annotation.ConfigurationClassPostProcessor.enhanceConfigurationClasses(ConfigurationClassPostP......
  • 基于weka的数据库挖掘➖分类方法的实现
    基于weka的数据库挖掘➖分类方法的实现关于作者作者介绍......
  • SpringBoot学习1(项目部署以及创建报错的解决)
    1.SpringBoot设计目的:简化Spring应用的初始搭建以及开发过程.2.空项目创建2.1查看更改自己的maven版本file-->settings有时候这里的mavenhomeusersettingsfilelocal..不是自己的maven文件夹,记得修改过来。 2.2创建modulefile-->projectstructure如果有一个module的......
  • MySQL中索引创建错误的场景
    同事反馈说某个MySQL数据库创建索引提示错误,模拟报错如下,CREATEINDEXt_reg_code_idxUSINGBTREEONt(reg_code)BLOB/TEXTcolumn'reg_code'usedinkeyspecificationwithoutakeylength从这个提示,可以知道是给T表的reg_code字段创建一个BTREE索引,而这个reg_code列的字段......
  • 基于jquery开发的Windows 12网页版
    预览https://win12.gitapp.cn首页代码<!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8"><metahttp-equiv="refresh"content="0;url=desktop.html"/><metaname=&q......