首页 > 其他分享 >GBRT代码详解(来自论文:Do We Really Need Deep Learning Models for Time Series Forecasting?)

GBRT代码详解(来自论文:Do We Really Need Deep Learning Models for Time Series Forecasting?)

时间:2022-10-04 20:14:50浏览次数:81  
标签:Do Forecasting _. Models cbwd df Train year Test

# -*- coding: utf-8 -*-
"""XGBoostWB_Forecasting_Using_Hybrid_DL_Framework_Pm2.5_(1,6)
"""
import sys
sys.version
#Import Libraries
import itertools
import pandas as pd
import numpy as np
import os
#import matplotlib
#import matplotlib.pyplot as plt
import random
# %matplotlib inline
import shutil

from random import shuffle

from sklearn.multioutput import MultiOutputRegressor
import xgboost as xgb
#TF Version
tf.__version__

num_periods_output = 6 #to predict
num_periods_input=1 #input



ALL_Test_Data=[]
ALL_Test_Prediction=[]

"""## preprocessing"""

from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer

def preprocessing(df_,num_features):
    
    cols=df_.columns
    #print('shape before',df_.shape)
    #print('date',df_['Date'].dtype)
    df_['Date'] =  pd.to_datetime(df_['Date'], format='%Y-%m-%d')
    #print('date',df_['Date'].dtype)
    df_['DayofWeek']=df_['Date'].dt.dayofweek
    df_['Week']=df_['Date'].dt.week
    df_['dayofyear']=df_['Date'].dt.dayofyear
    Train=df_[(df_.year==2010) | (df_.year==2011)| (df_.year==2012)| (df_.year==2013)]
    #Train=df_[(df_.year==2010) | (df_.year==2011)| (df_.year==2012)]
    Test=df_[(df_.year==2014)]
    Train=Train.fillna(Train.mean())
    Test=Test.fillna(Test.mean())
    ################################################encoding########################
    
    Train=Train[['pm2.5','No','year',    'month',    'day',    'hour',        'DEWP',    'TEMP',    'PRES',    'cbwd',    'Iws',    'Is',    'Ir']]
    cbwd=Train.pop('cbwd')
    Train.loc[:,'cbwd_cv']=(cbwd=='cv')*1.0
    Train.loc[:,'cbwd_NE']=(cbwd=='NE')*1.0
    Train.loc[:,'cbwd_NW']=(cbwd=='NW')*1.0
    Train.loc[:,'cbwd_SE']=(cbwd=='SE')*1.0
    Train=Train.values
    Train = Train.astype('float32')
    #################################################################################
    
    Test=Test[['pm2.5','No','year',    'month',    'day',    'hour',        'DEWP',    'TEMP',    'PRES',    'cbwd',    'Iws',    'Is',    'Ir']]
    
    cbwd=Test.pop('cbwd')
    Test.loc[:,'cbwd_cv']=(cbwd=='cv')*1.0
    Test.loc[:,'cbwd_NE']=(cbwd=='NE')*1.0
    Test.loc[:,'cbwd_NW']=(cbwd=='NW')*1.0
    Test.loc[:,'cbwd_SE']=(cbwd=='SE')*1.0
    Test=Test.values
    Test = Test.astype('float32')
    #################################################################################
    Number_Of_Features=num_features
    #split=num_periods_output+num_periods_input
        
    #############################  Normalization on train  #############
    PM_Train=Train[:,0]
    Train=np.delete(Train,[0],1)
    #normalizing data
    print('Len of training   ',Train)
    Train = Train.astype('float32')
    normalizer = MinMaxScaler().fit(Train)
    Train=normalizer.transform(Train)

    PM_Train=np.reshape(PM_Train,(len(PM_Train),1))
    Train=np.append(PM_Train,Train, axis=1)
    ############################################ TRAIN windows ##################################
    end=len(Train)
    start=0
    next=0
    x_batches=[]
    y_batches=[]
    
    count=0
    #print('len',len(Train))
    limit=num_periods_output+num_periods_input
    while start+(limit)<=end:
        next=start+num_periods_input
        x_batches.append(Train[start:next,:])
        y_batches.append(Train[next:next+num_periods_output,0])
        start=start+1
    x_batches=np.asarray(x_batches)
    #print('x-------------',len(x_batches))
    x_batches = x_batches.reshape(-1, num_periods_input, Number_Of_Features)   
    y_batches=np.asarray(y_batches)
    #print('y=======',len(y_batches))
    y_batches = y_batches.reshape(-1, num_periods_output, 1)   
    #print('len x_batches ',len(x_batches))
    
    ###########################################TEST Normalization##################################
    PM_Test=Test[:,0]
    Test=np.delete(Test,[0],1)

    Test = Test.astype('float32')
    Test=normalizer.transform(Test) 

    PM_Test=np.reshape(PM_Test,(len(PM_Test),1))
    Test=np.append(PM_Test,Test, axis=1)
    #------------------
    ############################################ TEST windows ##################################
    end_test=len(Test)
    start_test=0
    next_test=0
    x_testbatches=[]
    y_testbatches=[]
    
    #print('len',len(Train))
    while start_test+(limit)<=end_test:
        next_test=start_test+num_periods_input
        x_testbatches.append(Test[start_test:next_test,:])
        y_testbatches.append(Test[next_test:next_test+num_periods_output,0])
        start_test=start_test+num_periods_output
    x_testbatches=np.asarray(x_testbatches)
    #print('x----------',len(x_testbatches))

    x_testbatches = x_testbatches.reshape(-1, num_periods_input, Number_Of_Features)
    y_testbatches=np.asarray(y_testbatches)
    #print('y====',len(y_testbatches))
    y_testbatches = y_testbatches.reshape(-1, num_periods_output, 1) 
    print('len Test',len(Test))
    print('len xTestbatches',len(x_testbatches))
    return x_batches, y_batches, x_testbatches, y_testbatches


data_All=pd.DataFrame()
x_batches_Full=[]
y_batches_Full=[]
X_Test_Full=[]
Y_Test_Full=[]

range_list = [1]

data=pd.read_csv('/GBRT-for-TSF/Data/Multivariate/PM2_5.csv')
header=list(data.columns.values)
#print(header)
data=pd.DataFrame(data,columns=header)
x_batches_Full, y_batches_Full,X_Test_Full,Y_Test_Full=preprocessing(data,16)
#---------------------shuffle minibatches X and Y together-------------------------------------
#print(len(x_batches_Full),'     length of all file : ',len(y_batches_Full))
combined = list(zip(x_batches_Full, y_batches_Full))
random.shuffle(combined)
shuffled_batch_features, shuffled_batch_y = zip(*combined)



#xgboost part
#print(len(x_batches_Full))
All_Training_Instances=[]
 
#=============== change each window into Instance =================================
for i in range(0,len(shuffled_batch_features)):
    hold=[]
    temp=[]
    for j in range(0,len(shuffled_batch_features[i])):
      #print(len(hold))
      
      if j==(len(shuffled_batch_features[i])-1):
          hold=np.concatenate((hold, shuffled_batch_features[i][j][:]), axis=None)
          
      else:
          hold=np.concatenate((hold, shuffled_batch_features[i][j][0]), axis=None)
          
    #print(len(hold))
    All_Training_Instances.append(hold)
    

#print(len(All_Training_Instances[0]))


#=============== change each window into Instance =================================
All_Testing_Instances=[]
#print(len(X_Test_Full))
for i in range(0,len(X_Test_Full)):
  hold=[]
  temp=[]
  for j in range(0,len(X_Test_Full[i])):
       #print(len(hold))
      if j==(len(X_Test_Full[i])-1):
          hold=np.concatenate((hold, X_Test_Full[i][j][:]), axis=None)
      else:
          hold=np.concatenate((hold, X_Test_Full[i][j][0]), axis=None)
   
  All_Testing_Instances.append(hold)

#prediction=multioutput.predict(All_Testing_Instances)
#print(len(All_Testing_Instances[0]))
#===========================calling MultiOutput XGoost=========================
All_Testing_Instances=np.reshape(All_Testing_Instances, (len(All_Testing_Instances),len(All_Testing_Instances[0])))
Y_Test_Full=np.reshape(Y_Test_Full, (len(Y_Test_Full),num_periods_output))

#========== reshape train ==============================
All_Training_Instances=np.reshape(All_Training_Instances, (len(All_Training_Instances),len(All_Training_Instances[0])))
shuffled_batch_y=np.reshape(shuffled_batch_y, (len(shuffled_batch_y),num_periods_output))



#print(All_Training_Instances.shape)
model=xgb.XGBRegressor(learning_rate =0.02,
 n_estimators=420,
 max_depth=3,
 min_child_weight=1,
 gamma=0.0,
 subsample=0.95,
 colsample_bytree=0.95,
 scale_pos_weight=0.9,
 seed=42,silent=False)

multioutput=MultiOutputRegressor(model).fit(All_Training_Instances,shuffled_batch_y)


print('Fitting Done!')

prediction=multioutput.predict(All_Testing_Instances)
print('prediction ',prediction.shape)
print('test ',Y_Test_Full.shape)
MSE=np.mean(( prediction- Y_Test_Full)**2)
print('RMSE: ',MSE**0.5)
MAE=np.mean(np.abs( prediction- Y_Test_Full))
print('MAE: ',MAE)
View Code

 完整版代码来源

一、数据预处理

cols=df_.columns #取出列数

df_['Date'] = pd.to_datetime(df_['Date'], format='%Y-%m-%d')  #将数据类型转换成datetime格式

df_['DayofWeek']=df_['Date'].dt.dayofweek  #DAYOFWEEK函数返回日期的工作日索引值,即星期日为1,星期一为2,星期六为7

Train=Train.fillna(Train.mean())  #用平均值填充缺失值

Train=df_[(df_.year==2010) | (df_.year==2011)| (df_.year==2012)| (df_.year==2013)]

Test=df_[(df_.year==2014)]   #2014年作为测试数据,其他作为训练数据

cbwd=Train.pop('cbwd')   #返回pop删除的值并赋值给对象,原列表改变。pop()默认为最后一个元素,即pop(-1),pop(index)指定索引

Train.loc[:,'cbwd_cv']=(cbwd=='cv')*1.0   #loc定位,[x:y,a:b] 前者为行范围,后者为列范围   后面没懂??

Test=Test.values  #values取出除了行列名称的所有值(此处用处?)

Test = Test.astype('float32')  #astype 更改数据类型

PM_Train=Train[:,0] #取出所有行和第0列的数值

Train=np.delete(Train,[0],1)  #numpy.delete(arr, obj, axis)  处理Train矩阵,在[0]处处理,axis=1代表按列删除。delete用法

normalizer = MinMaxScaler().fit(Train)  #归一化处理  MinMaxScaler为其中一种归一化类型

标签:Do,Forecasting,_.,Models,cbwd,df,Train,year,Test
From: https://www.cnblogs.com/mowanying/p/16753604.html

相关文章