首页 > 其他分享 >pod进阶

pod进阶

时间:2023-09-19 11:55:31浏览次数:67  
标签:容器 进阶 kubectl liveness kubelet pod Pod name

目录

一、资源限制    

二、CPU 资源单位

三、内存和资源单位 

四、健康检查

五、实例

六、总结

 

 

 

 

一、资源限制    

  1.资源限制 

    业务cpu 内存

    当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。

  (1)request

    当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

  如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

  (2)limit

  如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。

 

官网示例:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

  2.Pod和容器的资源请求和限制

spec.containers[].resources.requests.cpu		//定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory		//定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu			//定义 cpu 的资源上限 
spec.containers[].resources.limits.memory		//定义内存的资源上限

 

 

 

  PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。

https://kubernetes.io/zh-cn/docs/concepts/configuration/manage-resources-containers/

  

 

二、CPU 资源单位

  1.CPU 资源单位

  CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
  Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于    Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。

三、内存和资源单位 

  1.内存资源单位 

  内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
  如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
    1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB

示例1:
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: images.my-company.example/app:v4
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"   
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: log-aggregator
    image: images.my-company.example/log-aggregator:v6
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"


此例子中的 Pod 有两个容器。每个容器的 request 值为 0.25 cpu 和 64MiB 内存,每个容器的 limit 值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存,总的资源 limit 为 1 cpu 和 256MiB 内存。

  

 

示例2:
vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "abc123"
    resources:
      requests:
        memory: "512Mi"  128
        cpu: "0.5"
      limits:
        memory: "1Gi"    256
        cpu: "1"




kubectl apply -f pod2.yaml
kubectl describe pod frontend

kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
frontend   2/2     Running   5          15m   10.244.2.4   node02   <none>           <none>

kubectl describe nodes node02				#由于当前虚拟机有2个CPU,所以Pod的CPU Limits一共占用了50%
Namespace                  Name                           CPU Requests  CPU Limits  Memory Requests  Memory Limits  AGE
  ---------                  ----                           ------------  ----------  ---------------  -------------  ---
  default                    frontend                       500m (25%)    1 (50%)     128Mi (3%)       256Mi (6%)     16m
  kube-system                kube-flannel-ds-amd64-f4pbp    100m (5%)     100m (5%)   50Mi (1%)        50Mi (1%)      19h
  kube-system                kube-proxy-pj4wp               0 (0%)        0 (0%)      0 (0%)           0 (0%)         19h
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource           Requests    Limits
  --------           --------    ------
  cpu                600m (30%)  1100m (55%)
  memory             178Mi (4%)  306Mi (7%)
  ephemeral-storage  0 (0%)      0 (0%)

  

四、健康检查

  1.健康检查

  健康检查:又称为探针(Probe)
  探针是由kubelet对容器执行的定期诊断。

  2.探针的三种规则  

  ●livenessProbe :判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。

  ●readinessProbe :判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

  ●startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
  #注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

  3.Probe支持三种检查方法

  ●exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。

  ●tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

  ●httpGet :对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的

  4.每次探测都将获得以下三种结果

  ●成功:容器通过了诊断。
  ●失败:容器未通过诊断。
  ●未知:诊断失败,因此不会采取任何行动

官网示例:
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

  

五、实例

//示例1:exec方式
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/busybox
    args:  
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      failureThreshold: 1
      initialDelaySeconds: 5
      periodSeconds: 5

#initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。
#periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
#failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
#timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地  持续运行,甚至可能超过所配置的限期,直到返回结果为止。)  

可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。

  

vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3
	  
kubectl create -f exec.yaml

kubectl describe pods liveness-exec
Events:
  Type     Reason     Age               From               Message
  ----     ------     ----              ----               -------
  Normal   Scheduled  51s               default-scheduler  Successfully assigned default/liveness-exec-pod to node02
  Normal   Pulled     46s               kubelet, node02    Container image "busybox" already present on machine
  Normal   Created    46s               kubelet, node02    Created container liveness-exec-container
  Normal   Started    45s               kubelet, node02    Started container liveness-exec-container
  Warning  Unhealthy  8s (x3 over 14s)  kubelet, node02    Liveness probe failed:
  Normal   Killing    8s                kubelet, node02    Container liveness-exec-container failed liveness probe,will be restarted

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
liveness-exec       1/1     Running   1          85s

 

 

  

//示例2:httpGet方式
apiVersion: v1  
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。

任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。

  

vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-httpget
  namespace: default
spec:
  containers:
  - name: liveness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10
	  
liveness  http-get  http://IP:80/index.html  延迟1秒  timeout=1s  period(频率)=3  
success=1    failure(失败)=3 机器会杀死容器  重启
	  
1+3 +3	  
	  
	  
kubectl create -f httpget.yaml

kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods
NAME               READY   STATUS    RESTARTS   AGE
liveness-httpget   1/1     Running   1          2m44s

  

//示例3:tcpSocket方式
apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。

 

vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
  name: probe-tcp
spec:
  containers:
  - name: nginx
    image: soscscs/myapp:v1
    livenessProbe:
      initialDelaySeconds: 5
      timeoutSeconds: 1
      tcpSocket:
        port: 8080
      periodSeconds: 10
      failureThreshold: 2


kubectl create -f tcpsocket.yaml

kubectl exec -it probe-tcp  -- netstat -natp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      1/nginx: master pro

kubectl get pods -w
NAME        READY   STATUS    RESTARTS   AGE
probe-tcp   1/1     Running             0          1s
probe-tcp   1/1     Running             1          25s       #第一次是 init(5秒) + period(10秒) * 2
probe-tcp   1/1     Running             2          45s       #第二次是 period(10秒) + period(10秒)  重试了两次
probe-tcp   1/1     Running             3          65s

 

  


//示例4:就绪检测 vim readiness-httpget.yaml apiVersion: v1 kind: Pod metadata: name: readiness-httpget namespace: default spec: containers: - name: readiness-httpget-container image: soscscs/myapp:v1 imagePullPolicy: IfNotPresent ports: - name: http containerPort: 80 readinessProbe: httpGet: port: 80 path: /index1.html initialDelaySeconds: 1 periodSeconds: 3 livenessProbe: httpGet: port: http path: /index.html initialDelaySeconds: 1 periodSeconds: 3 timeoutSeconds: 10 kubectl create -f readiness-httpget.yaml //readiness探测失败,无法进入READY状态 kubectl get pods NAME READY STATUS RESTARTS AGE readiness-httpget 0/1 Running 0 18s kubectl exec -it readiness-httpget sh # cd /usr/share/nginx/html/ # ls 50x.html index.html # echo 123 > index1.html # exit kubectl get pods NAME READY STATUS RESTARTS AGE readiness-httpget 1/1 Running 0 2m31s kubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.html kubectl get pods -w NAME READY STATUS RESTARTS AGE readiness-httpget 1/1 Running 0 4m10s readiness-httpget 0/1 Running 1 4m15s

  

kubectl create -f tcpsocket.yaml kubectl exec -it probe-tcp -- netstat -natp Active Internet connections (servers and established) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 1/nginx: master pro kubectl get pods -w NAME READY STATUS RESTARTS AGE probe-tcp 1/1 Running 0 1s probe-tcp 1/1 Running 1 25s #第一次是 init(5秒) + period(10秒) * 2 probe-tcp 1/1 Running 2 45s #第二次是 period(10秒) + period(10秒) 重试了两次 probe-tcp 1/1 Running 3 65s

 

六、总结

  容器编排和管理系统中,Pod 是 Kubernetes 中最小的可部署单元。Pod 可以包含一个或多个容器,并共享网络命名空间、存储资源和其他资源。为了确保 Pod 的正常运行,可以通过健康检查来监控和管理 Pod 的健康状态。

 

 

 

 

 

 

 

 

 

 

标签:容器,进阶,kubectl,liveness,kubelet,pod,Pod,name
From: https://www.cnblogs.com/zhende/p/17712188.html

相关文章

  • 记一次因Pod钩子引起Pod 持续Containercreating事件
    前言在Kubernetes日常维护中,都会出现各种业务需求,比如当一个DeploymentPod资源类型启动之后,我还需要让它在业务容器生命周期中,执行一些自定义任务内容,那么该如何满足这一需求呢?这时候就引入一个概念PodHook(钩子)。本篇将会结合实际生产案例,带大家了解一下PodHook独特魅力PodHo......
  • 如何巧妙应用SHOPLINE的POD(商品定制)来提升店铺销量?
    如今,消费者追求个性化产品的趋势愈发明显。据德勤消费者评论报告数据显示,有超过50%的消费者表示有兴趣为自己、朋友和家人购买个性化产品,五分之一的消费者表示愿意为个性化产品多支付20%的价格。面对这样的趋势,我们该怎样抓住机会,既能满足消费者的个性化需求,还能提升店铺产品销......
  • 笔记 | 提高数据库操作的效率,SQL查询进阶
    SQL(StructuredQueryLanguage)是管理和检索关系数据库中数据的标准语言。本文将介绍一些SQL查询的进阶示例。1.优化基本查询选择特定字段例子:SELECTfirst_name,last_nameFROMemployees;优化效果:减少数据传输和处理时间,降低了资源开销。使用索引例子:CREATEINDEXidx_product_n......
  • Vue学习六:路由进阶
    一、路由的封装抽离目标:将路由模块抽离出来。好处:拆分模块,易于维护。第一步:在src目录下新建一个router目录,在创建一个index.js文件,将先前main.js中的路由代码转移到index.js文件中。(这里需要使用到vue所以需将vue包导入;需修改组件路径,@符号代表绝对路径src;需将路由实例导出)index......
  • 图解几种常见 Kubernetes Pod 驱逐场景
    图解几种常见KubernetesPod驱逐场景sysdig 奇妙的Linux世界 2023-09-1708:20 发表于重庆 1人听过收录于合集#云原生263个#Kubernetes280个#Docker203个#开源461个公众号关注 「奇妙的Linux世界」设为「星标」,每天带你玩转Linux! KubernetesPod被......
  • C++STL进阶:pb_ds库
    Windows,64bitG++(ISOc20)stack=268435456开启O2优化万能头文件CodeForces在\(\ttC^{20(64)}_{++}\)版本下无法使用bits;如果需要使用priority_queue则无法使用using(会和std撞名字)。#include<bits/extc.h>usingnamespace__gnu_pbds;优先队列(不常用)概述......
  • k8s安装Dashboard出现了 pod 状态为CrashLoopBackOff
    1、问题现象2、解决办法(1)先看一下pods日志信息kubectllogs-f-nkubernetes-dashboardkubernetes-dashboard-658485d5c7-h75rs(2)错误信息:Get"https://10.96.0.1:443/api/v1/namespaces/kubernetes-dashboard/secrets/kubernetes-dashboard-csrf":dialtcp10.9......
  • 不知道如何入门Kotlin?《Android版kotlin协程入门进阶实战》带你从入门,带你飞
    作为一名Android开发者,掌握Kotlin语言对于职业发展具有重要意义。随着Google正式将Kotlin确立为Android开发的官方编程语言,Kotlin的地位在Android开发领域迅速攀升。因此,仅仅依靠Java语言进行开发已经不能满足当前市场需求。作为一名Android开发者,学习和掌握Kotl......
  • Vue进阶(幺柒肆):鼠标、键盘事件
    (文章目录)一、前言在项目开发过程中,需要根据鼠标事件进行相应处理。现予以梳理。鼠标事件如下所示:点击事件:@click//单击@dblclick//双击@mousedown//按下@mouseup//抬起@contextmenu//鼠标右键悬浮事件及触发顺序:@mouseover//划过@mouseenter//进入@mouse......
  • 疯踏java知识点-进阶精讲篇
    。继续进行讲解,如果前面有不懂的,可以翻阅一下同专栏的其他文章,该专栏是针对Java的知识从0开始。JavaBean一个Java中的类,其对象可用于程序中封装数据举例:学生类,手机类要求:1、成员变量使用private修饰2、提供每一个成员变量对应的setXxx()/getXxx()......