首页 > 其他分享 >Llama2-Chinese项目:2.2-大语言模型词表扩充

Llama2-Chinese项目:2.2-大语言模型词表扩充

时间:2023-09-16 22:45:12浏览次数:43  
标签:Chinese llama tokenizer sp 词表 Llama2 LLaMA model

  因为原生LLaMA对中文的支持很弱,一个中文汉子往往被切分成多个token,因此需要对其进行中文词表扩展。思路通常是在中文语料库上训练一个中文tokenizer模型,然后将中文tokenizer与LLaMA原生tokenizer进行合并,最终得到一个扩展后的tokenizer模型。国内Chinese-LLaMA-Alpaca开源项目详细说明了词表扩展[2]。

一.对LLaMA tokenizer扩充自定义的词表
  原版LLaMA模型的词表大小是32K,其主要针对英语进行训练,下面对其扩充20K中文词表,如下所示:

python merge_tokenizers.py \
  --llama_tokenizer_dir r'L:/20230902_Llama1/llama-7b-hf' \
  --chinese_sp_model_file r'./chinese_sp.model'
  • llama_tokenizer_dir:指向存放原版LLaMA tokenizer的目录
  • chinese_sp_model_file:指向用sentencepiece训练的中文词表文件

说明:在中文通用语料上训练的20K中文词表下载链接参考[3],如何构建垂直领域的中文词表下次分享。

二.merge_tokenizers.py注释
1.本文环境
本文环境为Windows10,Python3.10,CUDA 11.8,GTX 3090(24G),内存24G。

2.merge_tokenizers.py代码

import os
from transformers import LlamaTokenizer
from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
import sentencepiece as spm
import argparse
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"


# parser = argparse.ArgumentParser() # 创建一个ArgumentParser对象
# parser.add_argument('--llama_tokenizer_dir', default=r'L:/20230902_Llama1/llama-7b-hf', type=str, required=True) # 添加参数
# parser.add_argument('--chinese_sp_model_file', default='./chinese_sp.model', type=str) # 添加参数
# args = parser.parse_args() # 解析参数
# llama_tokenizer_dir = args.llama_tokenizer_dir # 这里是LLaMA tokenizer的路径
# chinese_sp_model_file = args.chinese_sp_model_file # 这里是Chinese tokenizer的路径

llama_tokenizer_dir = r'L:/20230902_Llama1/llama-7b-hf'  # 这里是LLaMA tokenizer的路径
chinese_sp_model_file = r'./chinese_sp.model'  # 这里是Chinese tokenizer的路径

# 加载tokenizer
llama_tokenizer = LlamaTokenizer.from_pretrained(llama_tokenizer_dir)  # 加载LLaMA tokenizer
chinese_sp_model = spm.SentencePieceProcessor()  # 定义Chinese tokenizer
chinese_sp_model.Load(chinese_sp_model_file)  # 加载Chinese tokenizer

llama_spm = sp_pb2_model.ModelProto()  # 定义LLaMA tokenizer的sentencepiece model
llama_spm.ParseFromString(llama_tokenizer.sp_model.serialized_model_proto())  # 从LLaMA tokenizer中加载sentencepiece model
chinese_spm = sp_pb2_model.ModelProto()  # 定义Chinese tokenizer的sentencepiece model
chinese_spm.ParseFromString(chinese_sp_model.serialized_model_proto())  # 从Chinese tokenizer中加载sentencepiece model

# 输出tokens的信息
print(len(llama_tokenizer), len(chinese_sp_model))  # 两个tokenizer的词表大小;输出为32000、20000
print(llama_tokenizer.all_special_tokens)  # LLaMA tokenizer的special tokens;输出为['']
print(llama_tokenizer.all_special_ids)  # LLaMA tokenizer的special tokens对应的id;输出为[0]
print(llama_tokenizer.special_tokens_map)  # LLaMA tokenizer的special tokens;输出为{'bos_token': '', 'eos_token': '', 'unk_token': ''}


# 将Chinese tokenizer的词表添加到LLaMA tokenizer中(合并过程)
llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces)  # LLaMA tokenizer的词表
print(len(llama_spm_tokens_set))  # LLaMA tokenizer的词表大小;输出为32000
print(f"Before:{len(llama_spm_tokens_set)}")  # LLaMA tokenizer的词表大小;输出为Before:32000
for p in chinese_spm.pieces:  # 遍历Chinese tokenizer的词表
    piece = p.piece  # Chinese tokenizer的词
    if piece not in llama_spm_tokens_set:  # 如果Chinese tokenizer的词不在LLaMA tokenizer的词表中
        new_p = sp_pb2_model.ModelProto().SentencePiece()  # 创建一个新的sentencepiece
        new_p.piece = piece  # 设置sentencepiece的词
        new_p.score = 0  # 设置sentencepiece的score
        llama_spm.pieces.append(new_p)  # 将sentencepiece添加到LLaMA tokenizer的词表中
print(f"New model pieces: {len(llama_spm.pieces)}")  # LLaMA tokenizer的词表大小;输出为New model pieces: 49953


# 保存LLaMA tokenizer
output_sp_dir = 'merged_tokenizer_sp'  # 这里是保存LLaMA tokenizer的路径
output_hf_dir = 'merged_tokenizer_hf'  # 这里是保存Chinese-LLaMA tokenizer的路径
os.makedirs(output_sp_dir, exist_ok=True)  # 创建保存LLaMA tokenizer的文件夹
with open(output_sp_dir + '/chinese_llama.model', 'wb') as f:
    f.write(llama_spm.SerializeToString())
tokenizer = LlamaTokenizer(vocab_file=output_sp_dir + '/chinese_llama.model')  # 创建LLaMA tokenizer
tokenizer.save_pretrained(output_hf_dir)  # 保存Chinese-LLaMA tokenizer
print(f"Chinese-LLaMA tokenizer has been saved to {output_hf_dir}")  # 保存Chinese-LLaMA tokenizer

# 测试tokenizer
llama_tokenizer = LlamaTokenizer.from_pretrained(llama_tokenizer_dir)  # LLaMA tokenizer
chinese_llama_tokenizer = LlamaTokenizer.from_pretrained(output_hf_dir)  # Chinese-LLaMA tokenizer
print(tokenizer.all_special_tokens)  # LLaMA tokenizer的special tokens;输出为['<s>', '</s>', '<unk>']
print(tokenizer.all_special_ids)  # LLaMA tokenizer的special tokens对应的id;输出为[0, 1, 2]
print(tokenizer.special_tokens_map)  # LLaMA tokenizer的special tokens;输出为{'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'}
text = '''白日依山尽,黄河入海流。欲穷千里目,更上一层楼。
The primary use of LLaMA is research on large language models, including'''
print("Test text:\n", text)  # 测试文本
print(f"Tokenized by LLaMA tokenizer:{llama_tokenizer.tokenize(text)}")  # 测试LLaMA tokenizer
# 输出结果
# Tokenized by LLaMA tokenizer:['▁', '白', '日', '<0xE4>', '<0xBE>', '<0x9D>', '山', '<0xE5>', '<0xB0>', '<0xBD>', ',', '黄', '河', '入', '海', '流', '。', '<0xE6>', '<0xAC>', '<0xB2>', '<0xE7>', '<0xA9>', '<0xB7>', '千', '里', '目', ',', '更', '上', '一', '<0xE5>', '<0xB1>', '<0x82>', '<0xE6>', '<0xA5>', '<0xBC>', '。', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including']
print(f"Tokenized by Chinese-LLaMA tokenizer:{chinese_llama_tokenizer.tokenize(text)}")  # 测试Chinese-LLaMA tokenizer
# 输出结果
# Tokenized by Chinese-LLaMA tokenizer:['▁白', '日', '依', '山', '尽', ',', '黄河', '入', '海', '流', '。', '欲', '穷', '千里', '目', ',', '更', '上', '一层', '楼', '。', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including']

3.生成的目录


参考文献:
[1]是否有基于Llama-2的增量训练模型:https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/817
[2]https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/scripts/merge_tokenizer/merge_tokenizers.py
[3]https://github.com/ymcui/Chinese-LLaMA-Alpaca/tree/main/scripts/merge_tokenizer/chinese_sp.model
[4]下载Chinese-LLaMA-Alpaca:git clone https://github.com/ymcui/Chinese-LLaMA-Alpaca.git
[5]下载llama-7b-hf:git lfs clone https://huggingface.co/yahma/llama-7b-hf

标签:Chinese,llama,tokenizer,sp,词表,Llama2,LLaMA,model
From: https://www.cnblogs.com/shengshengwang/p/17707448.html

相关文章

  • 如何用华为云ModelArts平台玩转Llama2
    本文分享自华为云社区《如何用华为云ModelArts平台玩转Llama2》,作者:码上开花_Lancer。天哪~~Llama2模型开源了拉!! Llama2不仅开源了预训练模型,而且还开源了利用对话数据SFT后的Llama2-Chat模型,并对Llama2-Chat模型的微调进行了详细的介绍。开源模型目前有7B、13B、70B三种尺......
  • Llama2模型预训练,推理与微调测试
    官方环境要求(推理、微调):本次部署使用单卡A100-40G显卡。部署虚拟环境创建:condacreate-ntestpython=3.10.9condaactivatetest#启动虚拟环境拉取Llama2-Chinesegitclonehttps://github.com/FlagAlpha/Llama2-Chinese.gitcdLlama2-Chinese安装依赖库:pipinsta......
  • Llama2-Chinese项目:1-项目介绍和模型推理
    Atom-7B与Llama2间的关系:Atom-7B是基于Llama2进行中文预训练的开源大模型。为什么叫原子呢?因为原子生万物,Llama中文社区希望原子大模型未来可以成为构建AI世界的基础单位。目前社区发布了6个模型,如下所示:FlagAlpha/Atom-7BFlagAlpha/Llama2-Chinese-7b-ChatFlagAlpha/Llama2-Chin......
  • 如何让 Llama2、通义千问开源大语言模型快速跑在函数计算上?
    :::info本文是“在Serverless平台上构建AIGC应用”系列文章的第一篇文章。:::前言随着ChatGPT以及StableDiffusion,Midjourney这些新生代AIGC应用的兴起,围绕AIGC应用的相关开发变得越来越广泛,有呈井喷之势,从长远看这波应用的爆发不仅仅是停留在形式之上,更是在各个领域产生......
  • 微调llama2模型教程:创建自己的Python代码生成器
    本文将演示如何使用PEFT、QLoRa和Huggingface对新的lama-2进行微调,生成自己的代码生成器。所以本文将重点展示如何定制自己的llama2,进行快速训练,以完成特定任务。 https://avoid.overfit.cn/post/9794c9eef1df4e55adf514b3d727ee3b......
  • 亲自跑 llama2的 微调代码
    https://www.kaggle.com/zhangbo2008/train-llama2-best效果图: 这周周末在家会录制这套流程的运行的视频,有需要的老铁可以关注一下.......
  • 轻松玩转70亿参数大模型!借助Walrus在AWS上部署Llama2
    Llama2是Meta的下一代开源大语言模型。它是一系列经过预训练和微调的模型,参数范围从70亿到700亿个。MetaLlama2可免费用于研究和商业用途并且提供了一系列具有不同大小和功能的模型,因此一经发布备受关注。在(之前的文章)中,我们详细地介绍了Llama2的使用和优势以及FAQ。......
  • 轻松玩转70亿参数大模型!借助Walrus在AWS上部署Llama2
    Llama2是Meta的下一代开源大语言模型。它是一系列经过预训练和微调的模型,参数范围从70亿到700亿个。MetaLlama2可免费用于研究和商业用途并且提供了一系列具有不同大小和功能的模型,因此一经发布备受关注。在之前的文章中,我们详细地介绍了Llama2的使用和优势以及FAQ。......
  • 大模型入门(八)—— Llama2论文简读
    一、背景介绍大语言模型(LLM)作为功能强大的人工智能助手展现出了巨大的前景,它们擅长完成需要跨领域专业知识的复杂推理任务,包括编程和创意写作等专业领域。它们通过简单直观的聊天界面与人类互动,让大预言模型快速地被推广。大语言模型的模型架构和训练方法相对比......
  • 在树莓派中跑迷你Llama2中文模型
      OpenAI的Karpathy利用周末搞了一个迷你Llama2项目llama2.c用500行C语言实现无任何依赖项的推理程序,此项目在github发布以来衍生出了基于各种语言的迷你Llama推理实现llama2.go、llama2.java、llama2.py等等;  但该项目原本的模型并不支持中文,最近正好看到一个基于llama2的中......