首页 > 其他分享 >15000字、6个代码案例、5个原理图让你彻底搞懂Synchronized

15000字、6个代码案例、5个原理图让你彻底搞懂Synchronized

时间:2023-09-06 19:44:23浏览次数:79  
标签:00 Synchronized 00000000 lock object 原理图 mark 线程 搞懂

Synchronized

本篇文章将围绕synchronized关键字,使用大量图片、案例深入浅出的描述CAS、synchronized Java层面和C++层面的实现、锁升级的原理、源码等

大概观看时间17分钟

可以带着几个问题去查看本文,如果认真看完,问题都会迎刃而解:

1、synchronized是怎么使用的?在Java层面是如何实现?

2、CAS是什么?能带来什么好处?又有什么缺点?

3、mark word是什么?跟synchronized有啥关系?

4、synchronized的锁升级优化是什么?在C++层面如何实现?

5、JDK 8 中轻量级锁CAS失败到底会不会自旋?

6、什么是object monitor?wait/notify方法是如何实现的?使用synchronized时,线程阻塞后是如何在阻塞队列中排序的?

...

synchronized Java层面实现

synchronized作用在代码块或方法上,用于保证并发环境下的同步机制

任何线程遇到synchronized都要先获取到锁才能执行代码块或方法中的操作

在Java中每个对象有一个对应的monitor对象(监视器),当获取到A对象的锁时,A对象的监视器对象中有个字段会指向当前线程,表示这个线程获取到A对象的锁(详细原理后文描述)

synchronized可以作用于普通对象和静态对象,当作用于静态对象、静态方法时,都是去获取其对应的Class对象的锁

synchronized作用在代码块上时,会使用monitorentry和monitorexit字节码指令来标识加锁、解锁

synchronized作用在方法上时,会在访问标识上加上synchronized

指令中可能出现两个monitorexit指令是因为当发生异常时,会自动执行monitorexit进行解锁

正常流程是PC 12-14,如果在此期间出现异常就会跳转到PC 17,最终在19执行monitorexit进行解锁

        Object obj = new Object();
        synchronized (obj) {

        }

image.png

上篇文章中我们说过原子性、可见性以及有序性

synchronized加锁解锁的字节码指令使用屏障,加锁时共享内存从主内存中重新读取,解锁前把工作内存数据写回主内存以此来保证可见性

由于获取到锁才能执行相当于串行执行,也就保证原子性和有序性,需要注意的是加锁与解锁之间的指令还是可以重排序的

CAS

为了更好的说明synchronized原理和锁升级,我们先来聊聊CAS

上篇文章中我们说过,volatile不能保证复合操作的原子性,使用synchronized方法或者CAS能够保证复合操作原子性

那什么是CAS呢?

CAS全称 Compare And Swap 比较并交换,读取数据后要修改时用读取的数据和地址上的值进行比较,如果相等那就将地址上的值替换为目标值,如果不相等,通常会重新读取数据再进行CAS操作,也就是失败重试

synchronized加锁是一种悲观策略,每次遇到时都认为会有并发问题,要先获取锁才操作

而CAS是一种乐观策略,每次先大胆的去操作,操作失败(CAS失败)再使用补偿措施(失败重试)

CAS与失败重试(循环)的组合构成乐观锁或者说自旋锁(循环尝试很像在自我旋转)

并发包下的原子类,依靠Unsafe大量使用CAS操作,比如AtomicInteger的自增

    public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }

    //var1是调用方法的对象,var2是需要读取/修改的值在这个对象上的偏移量,var4是自增1
    public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            //var5是通过对象和字段偏移量获取到字段最新值
            var5 = this.getIntVolatile(var1, var2);
            //cas:var1,var2找到字段的值 与 var5比较,相等就替换为 var5+var4 
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
        return var5;
    }

CAS只能对一个变量进行操作,如果要对多个变量进行操作,那么只能对外封装一层(将多个变量封装为新对象的字段),再使用原子类中的AtomicReference

不知各位同学有没有发现,CAS的流程有个bug,就是在读数据与比较数据之间,如果数据从A被改变到B,再改变到A,那么CAS也能执行成功

这种场景有的业务能够接受,有的业务无法接受,这就是所谓的ABA问题

而解决ABA问题的方式比较简单,可以再比较时附加一个自增的版本号,JDK也提供解决ABA问题的原子类AtomicStampedReference

CAS能够避免线程阻塞,但如果一直失败就会一直循环,增加CPU的开销,CAS失败后重试的次数/时长不好评估

因此CAS操作适用于竞争小的场景,用CPU空转的开销来换取线程阻塞挂起/恢复的开销

锁升级

早期版本的synchronized会将获取不到锁的线程直接挂起,性能不好

JDK 6 时对synchronized的实现进行优化,也就是锁升级

锁的状态可以分为无锁、偏向锁、轻量级锁、重量级锁

可以暂时把重量级锁理解为早期获取不到锁就让线程挂起,新的优化也就是轻量级锁和偏向锁

mark word

为了更好的说明锁升级,我们先来聊聊Java对象头中的mark word

我们下面的探究都是围绕64位的虚拟机

Java对象的内存由mark word、klass word、如果是数组还要记录长度、实例数据(字段)、对其填充(填充到8字节倍数)组成

mark word会记录锁状态,在不同锁状态的情况下记录的数据也不同

下面这个表格是从无锁到重量级锁mark word记录的内容

|----------------------------------------------------------------------|--------|--------|
| unused:25 | identity_hashcode:31 | unused:1 | age:4 | biased_lock:1  | lock:2 | 无锁   
|----------------------------------------------------------------------|--------|--------|
|  thread:54 |         epoch:2      | unused:1 | age:4 | biased_lock:1 | lock:2 | 偏向锁
|----------------------------------------------------------------------|--------|--------|
|                     ptr_to_lock_record:62                            | lock:2 | 轻量级锁
|----------------------------------------------------------------------|--------|--------|
|                     ptr_to_heavyweight_monitor:62                    | lock:2 | 重量级锁
|----------------------------------------------------------------------|--------|--------|

unused 表示还没使用

identity_hashcode 用于记录一致性哈希

age 用于记录GC年龄

biased_lock 标识是否使用偏向锁,0表示未开启,1表示开启

lock 用于标识锁状态标志位,01无锁或偏向锁、00轻量级锁、10重量级锁

thread 用于标识偏向的线程

epoch 记录偏向的时间戳

ptr_to_lock_record 记录栈帧中的锁记录(后文介绍)

ptr_to_heavyweight_monitor 记录获取重量级锁的线程

jol查看mark word

比较熟悉mark word的同学可以跳过

了解mark word后再来熟悉下不同锁状态下的mark word,我使用的是jol查看内存

       <!-- https://mvnrepository.com/artifact/org.openjdk.jol/jol-core -->
        <dependency>
            <groupId>org.openjdk.jol</groupId>
            <artifactId>jol-core</artifactId>
            <version>0.12</version>
        </dependency>
无锁

各位同学实验时的mark word可能和我注释中的不同,我们主要查看锁标识的值和是否启用偏向锁

image.png

    public void noLock() {
        Object obj = new Object();
        //mark word  00000001 被unused:1,age:4,biased_lock:1,lock:2使用,001表示0未启用偏向锁,01表示无锁
        //01 00 00 00  (00000001 00000000 00000000 00000000)
        //00 00 00 00  (00000000 00000000 00000000 00000000)
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);
        System.out.println(objClassLayout.toPrintable());

        //计算一致性哈希后
        //01 b6 ce a8
        //6a 00 00 00
        obj.hashCode();
        System.out.println(objClassLayout.toPrintable());

        //进行GC 查看GC年龄 0 0001 0 01 前2位表示锁状态01无锁,第三位biased_lock为0表示未启用偏向锁,后续四位则是GC年龄age 1
        //09 b6 ce a8 (00001001 10110110 11001110 10101000)
        //6a 00 00 00 (01101010 00000000 00000000 00000000)
        System.gc();
        System.out.println(objClassLayout.toPrintable());
    }
轻量级锁
    public void lightLockTest() throws InterruptedException {
        Object obj = new Object();
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);
        //1334729950
        System.out.println(obj.hashCode());
        //0 01 无锁
        //01 4e c0 d5 (00000001 01001110 11000000 11010101)
        //6a 00 00 00 (01101010 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());


        Thread thread1 = new Thread(() -> {
            synchronized (obj) {
                // 110110 00 中的00表示轻量级锁其他62位指向拥有锁的线程
                //d8 f1 5f 1d (11011000 11110001 01011111 00011101)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());

                //1334729950
                //无锁升级成轻量级锁后 hashcode未变 对象头中没存储hashcode 只存储拥有锁的线程
                //(实际上mark word内容被存储到lock record中,所以hashcode也被存储到lock record中)
                System.out.println(obj.hashCode());
            }
        }, "t1");

        thread1.start();
        //等待t1执行完 避免 发生竞争
        thread1.join();

        //轻量级锁 释放后 mark word 恢复成无锁 存储哈希code的状态
        //01 4e c0 d5 (00000001 01001110 11000000 11010101)
        //6a 00 00 00 (01101010 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());

        Thread thread2 = new Thread(() -> {
            synchronized (obj) {
                //001010 00 中的00表示轻量级锁其他62位指向拥有锁的线程
                //28 f6 5f 1d (00101000 11110110 01011111 00011101)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t2");
        thread2.start();
        thread2.join();
    }
偏向锁
    public void biasedLockTest() throws InterruptedException {
        //延迟让偏向锁启动
        Thread.sleep(5000);

        Object obj = new Object();
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);

        //1 01 匿名偏向锁 还未设置偏向线程
        //05 00 00 00 (00000101 00000000 00000000 00000000)
        //00 00 00 00 (00000000 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());

        synchronized (obj) {
            //偏向锁 记录 线程地址
            //05 30 e3 02 (00000101 00110000 11100011 00000010)
            //00 00 00 00 (00000000 00000000 00000000 00000000)
            System.out.println(Thread.currentThread().getName() + ":");
            System.out.println(objClassLayout.toPrintable());
        }

        Thread thread1 = new Thread(() -> {
            synchronized (obj) {
                //膨胀为轻量级 0 00 0未启用偏向锁,00轻量级锁
                //68 f4 a8 1d (01101000 11110100 10101000 00011101)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t1");

        thread1.start();
        thread1.join();
    }
重量级锁
    public void heavyLockTest() throws InterruptedException {
        Object obj = new Object();
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);
        Thread thread1 = new Thread(() -> {
            synchronized (obj) {
                //第一次 00 表示 轻量级锁
                //d8 f1 c3 1e (11011000 11110001 11000011 00011110)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());

                //用debug控制t2来竞争
                //第二次打印 变成 10 表示膨胀为重量级锁(t2竞争)  其他62位指向监视器对象
                //fa 21 3e 1a (11111010 00100001 00111110 00011010)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t1");

        thread1.start();

        Thread thread2 = new Thread(() -> {
            synchronized (obj) {
                //t2竞争 膨胀为 重量级锁 111110 10 10为重量级锁
                //fa 21 3e 1a (11111010 00100001 00111110 00011010)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t2");
        thread2.start();

        thread1.join();
        thread2.join();

        //10 重量级锁 未发生锁降级
        //3a 36 4d 1a (00111010 00110110 01001101 00011010)
        //00 00 00 00 (00000000 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());
    }

轻量级锁

轻量级锁的提出是为了减小传统重量级锁使用互斥量(挂起/恢复线程)所产生的开销

面对较少的竞争场景时,获取锁的时间总是短暂的,而挂起线程用户态、内核态的开销比较大,使用轻量级锁减少开销

那么轻量级锁是如何实现的呢?

轻量级锁主要由lock record、mark word、CAS来实现,lock record存储在线程的栈帧中,来记录锁的信息

加锁

查看对象是不是无锁状态,如果对象是无锁状态,会将mark word复制到lock record锁记录中的displaced mark word

image.png

然后再尝试使用CAS尝试将mark word中部分内容替换指向这个lock record,如果成功表示获取锁成功

image.png

如果对象持有锁,会查看持有锁的线程是不是当前线程,这种可重入的情况下lock record中记录不再是mark word而是null

可重入的情况下,只需要进行自增计数即可,解锁时遇到null的lock record则扣减

image.png

如果CAS失败或者持有锁的线程不是当前线程,就会触发锁膨胀

关键代码如下:

void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  //当前对象的mark word
  markOop mark = obj->mark();
  assert(!mark->has_bias_pattern(), "should not see bias pattern here");

  //如果当前对象是无锁状态 
  if (mark->is_neutral()) {
    //将mark word复制到lock record
    lock->set_displaced_header(mark);
    //CAS将当前对象的mark word内容替换为指向lock record
    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
      TEVENT (slow_enter: release stacklock) ;
      return ;
    }
  } else
  //如果有锁  判断是不是当前线程获取锁
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    assert(lock != mark->locker(), "must not re-lock the same lock");
    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
    //可重入锁 复制null
    lock->set_displaced_header(NULL);
    return;
  }

  //有锁并且获取锁的线程不是当前线程 或者 CAS失败 进行膨胀
  lock->set_displaced_header(markOopDesc::unused_mark());
  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
}
解锁

查看lock record中复制的内容是不是空,是空说明是可重入锁

不为空则查看mark word是否指向lock record,如果指向则CAS尝试将mark word记录指向lock record替换为lock record中的displaced mark word(也就是原来的mark word)

如果mark word不指向lock record 或者 CAS失败了 说明存在竞争,其他线程加锁失败让mark word指向重量级锁,直接膨胀

image.png

关键代码如下:

void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");

  //获取复制的mark word
  markOop dhw = lock->displaced_header();
  markOop mark ;
  //如果为空 说明是可重入
  if (dhw == NULL) {
     // Recursive stack-lock.
     // Diagnostics -- Could be: stack-locked, inflating, inflated.
     mark = object->mark() ;
     assert (!mark->is_neutral(), "invariant") ;
     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
     }
     if (mark->has_monitor()) {
        ObjectMonitor * m = mark->monitor() ;
        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
        assert(m->is_entered(THREAD), "invariant") ;
     }
     return ;
  }

  mark = object->mark() ;

  //如果mark word指向lock record
  if (mark == (markOop) lock) {
     assert (dhw->is_neutral(), "invariant") ;
     //尝试CAS将指向lock record的mark word替换为原来的内容
     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
        TEVENT (fast_exit: release stacklock) ;
        return;
     }
  }

  //未指向当前lock record或者CAS失败则膨胀
  ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ;
}

偏向锁

hotspot开发人员测试,在某些场景下,总是同一个线程获取锁,在这种场景下,希望用更小的开销来获取锁

当开启偏向锁后,如果是无锁状态会将mark word改为偏向某个线程ID,以此标识这个线程获取锁(锁偏向这个线程)

如果正处于偏向锁,遇到竞争可能膨胀为轻量级锁,如果要存储一致性哈希等情况也会膨胀为重量级锁

JDK8默认开启偏向锁,在高版本JDK默认不开启偏向锁,可能因为偏向锁的维护超过收益,我们也不深入进行研究

重量级锁

object monitor

使用object monitor对象来实现重量级锁

object monitor中使用一些字段记录信息,比如:object字段用于记录锁的那个对象,header字段用于记录锁的那个对象的mark word、owner字段用于记录持有锁的线程

object monitor使用阻塞队列来存储竞争不到锁的线程,使用等待队列来存储调用wait进入等待状态的线程

阻塞队列和等待队列类比着并发包下的AQS和Condition

object monitor使用cxq栈和entry list队列来实现阻塞队列,其中cxq栈中存储有竞争的线程,entry list存储已经竞争失败较稳定的线程;使用wait set实现等待队列

当线程调用wait时,进入wait set等待队列

而调用notify时,只是将等待队列的队头节点加入cxq,并没有唤醒该线程去竞争

真正的唤醒线程是在释放锁时,去稳定的队列entry list中唤醒队头节点去竞争,而此时被唤醒的节点并不一定能抢到锁,因为线程进入cxq时还会通过自旋来抢锁,以此来实现非公平锁

如果稳定的entry list中没有存储线程,会将cxq栈中存储的线程全存储到entry list中再去唤醒,此时越晚进入cxq的线程反而会越早被唤醒(cxq栈先进后出)

其实实现与AQS类似,来看这样一段代码:

t1-t6获取同一把锁,使用t1线程进行阻塞一会,后续t2-t6线程按照顺序启动,由于自转获取不到锁,它们会被依次放入cxq:t2,t3,t4,t5,t6

在t1释放锁时,由于entry list中没有线程,于是将cxq中的线程存入entry list:t6,t5,t4,t3,t2,再唤醒t6

由于后续没有线程进行竞争,因此最终执行顺序为t1,t6,t5,t4,t3,t2

Object obj = new Object();
new Thread(() -> {
    synchronized (obj) {
        try {
            //输入阻塞
            //阻塞的目的是让  其他线程自旋完未获取到锁,进入cxq栈
            System.in.read();
        } catch (IOException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + " 获取到锁");
    }
}, "t1").start();

//sleep控制线程阻塞的顺序
Thread.sleep(50);
new Thread(() -> {
    synchronized (obj) {
        System.out.println(Thread.currentThread().getName() + " 获取到锁");
    }
}, "t2").start();

Thread.sleep(50);
new Thread(() -> {
    synchronized (obj) {
        System.out.println(Thread.currentThread().getName() + " 获取到锁");
    }
}, "t3").start();

Thread.sleep(50);
new Thread(() -> {
    synchronized (obj) {
        System.out.println(Thread.currentThread().getName() + " 获取到锁");
    }
}, "t4").start();

Thread.sleep(50);
new Thread(() -> {
    synchronized (obj) {
        System.out.println(Thread.currentThread().getName() + " 获取到锁");
    }
}, "t5").start();

Thread.sleep(50);
new Thread(() -> {
    synchronized (obj) {
        System.out.println(Thread.currentThread().getName() + " 获取到锁");
    }
}, "t6").start();

大致了解了下object monitor,我们再来看看膨胀和自旋

膨胀

在膨胀时会有四种状态,分别是

inflated 已膨胀:mark word锁标志为10(2)说明已膨胀,直接返回object monitor

inflation in progress 膨胀中:如果已经有其他线程在膨胀了,就等待一会循环后查看状态进入已膨胀的逻辑

stack-locked 轻量级锁膨胀

neutral 无锁膨胀

轻量级锁和无锁膨胀逻辑差不多,都是需要创建object monitor对象,并且set一些属性进去(比如:mark word、锁的哪个对象、哪个线程持有锁...),最后再使用CAS去替换mark word指向object monitor

ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {

  for (;;) {
      const markOop mark = object->mark() ;
      assert (!mark->has_bias_pattern(), "invariant") ;

      // The mark can be in one of the following states:
      // *  Inflated     - just return
      // *  Stack-locked - coerce it to inflated
      // *  INFLATING    - busy wait for conversion to complete
      // *  Neutral      - aggressively inflate the object.
      // *  BIASED       - Illegal.  We should never see this

      // CASE: inflated 
      // 已膨胀:查看 mark word 后两位是否为2  是则膨胀完 返回monitor对象
      if (mark->has_monitor()) {
          ObjectMonitor * inf = mark->monitor() ;
          assert (inf->header()->is_neutral(), "invariant");
          assert (inf->object() == object, "invariant") ;
          assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
          return inf ;
      }

      // CASE: inflation in progress - inflating over a stack-lock.
      // 膨胀中: 等待一会 再循环 从膨胀完状态退出
      if (mark == markOopDesc::INFLATING()) {
         TEVENT (Inflate: spin while INFLATING) ;
         ReadStableMark(object) ;
         continue ;
      }

      // CASE: stack-locked
      //轻量级锁膨胀
      if (mark->has_locker()) {
          //创建ObjectMonitor
          ObjectMonitor * m = omAlloc (Self) ;
          m->Recycle();
          m->_Responsible  = NULL ;
          m->OwnerIsThread = 0 ;
          m->_recursions   = 0 ;
          m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
          //cas将mark word替换指向ObjectMonitor
          markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;         
          //cas 失败 则说明其他线程膨胀成功,删除当前monitor 退出
          if (cmp != mark) {
             omRelease (Self, m, true) ;
             continue ;       // Interference -- just retry
          }
          markOop dmw = mark->displaced_mark_helper() ;
          assert (dmw->is_neutral(), "invariant") ;

          //成功 设置mark word
          m->set_header(dmw) ;
          //设置持有锁的线程
          m->set_owner(mark->locker());
          //设置锁的是哪个对象
          m->set_object(object);
          guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
          //修改mark word对象头信息 锁状态 2
          object->release_set_mark(markOopDesc::encode(m));
          if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
          TEVENT(Inflate: overwrite stacklock) ;
          if (TraceMonitorInflation) {
            if (object->is_instance()) {
              ResourceMark rm;
              tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
                (void *) object, (intptr_t) object->mark(),
                object->klass()->external_name());
            }
          }
          return m ;
      }

      // CASE: neutral
      //无锁膨胀 与轻量级锁膨胀类似,也是创建monitor对象并注入属性,只是很多属性为空
      assert (mark->is_neutral(), "invariant");

      ObjectMonitor * m = omAlloc (Self) ;
      m->Recycle();
      m->set_header(mark);
      m->set_owner(NULL);
      m->set_object(object);
      m->OwnerIsThread = 1 ;
      m->_recursions   = 0 ;
      m->_Responsible  = NULL ;
      m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
      //cas 更新 mark word 失败循环等待  成功返回
      if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
          m->set_object (NULL) ;
          m->set_owner  (NULL) ;
          m->OwnerIsThread = 0 ;
          m->Recycle() ;
          omRelease (Self, m, true) ;
          m = NULL ;
          continue ;
      }
     
      if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
      TEVENT(Inflate: overwrite neutral) ;
      if (TraceMonitorInflation) {
        if (object->is_instance()) {
          ResourceMark rm;
          tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
            (void *) object, (intptr_t) object->mark(),
            object->klass()->external_name());
        }
      }
      return m ;
  }
}
自旋

膨胀过后,在最终挂起前会进行固定自旋和自适应自旋

固定自旋默认10+1次

自适应自旋一开始5000次,如果最近竞争少获取到锁就将自旋次数调大,如果最近竞争大获取不到锁就将自旋次数调小

int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {

    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
    int ctr = Knob_FixedSpin ;
    if (ctr != 0) {
        while (--ctr >= 0) {
            if (TryLock (Self) > 0) return 1 ;
            SpinPause () ;
        }
        return 0 ;
    }
    //先进行固定11自旋次数 获取到锁返回,没获取到空转
    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
      if (TryLock(Self) > 0) {
        // Increase _SpinDuration ...
        // Note that we don't clamp SpinDuration precisely at SpinLimit.
        // Raising _SpurDuration to the poverty line is key.
        int x = _SpinDuration ;
        if (x < Knob_SpinLimit) {
           if (x < Knob_Poverty) x = Knob_Poverty ;
           _SpinDuration = x + Knob_BonusB ;
        }
        return 1 ;
      }
      SpinPause () ;
    }
    
    //自适应自旋 一开始5000 如果成功认为此时竞争不大 自旋获取锁成功率高 增加重试次数 如果失败则减少
    //...
}   

总结

本篇文章围绕synchronized,深入浅出的描述CAS、synchronized在Java层面和C++层面的实现、锁升级原理、案例、源码等

synchronized用于并发下的需要同步的场景,使用它可以满足原子性、可见性以及有序性,它可以作用在普通对象和静态对象,作用于静态对象时是去获取其对应的Class对象的锁

synchronized作用在代码块上时,使用monitorentry、monitorexit字节码指令来标识加锁、解锁;作用在方法上时,在访问标识加锁synchronized关键字,虚拟机隐式使用monitorentry、monitorexit

CAS 比较并替换,常与重试机制实现乐观锁/自旋锁,优点是能够在竞争小的场景用较小的开销取代线程挂起,但带来ABA问题、无法预估重试次数空转CPU的开销等问题

轻量级锁的提出是为了在交替执行/竞争少的场景,用更小的开销取代互斥量;使用CAS和lock record实现

轻量级锁加锁时,如果是无锁则复制mark word到lock record中,再CAS将对象mark word替换为指向该lock record,失败则膨胀;如果已经持有锁则判断持有锁的线程是不是当前线程,是则累加次数,不是当前线程则膨胀

轻量级锁解锁时,查看lock record复制的是不是null,是则说明是可重入锁,次数减一;不是则CAS把复制过来的mark word替换回去,如果替换失败说明其他线程竞争,mark word已经指向object monitor,去指向重量级锁的释放

偏向锁的提出是为了在经常一条线程执行的场景下,用更小的开销来取代CAS的开销,只不过高版本不再默认开启

重量级锁由object monitor来实现,object monitor中使用cxq、entry list来构成阻塞队列,wait set来构成等待队列

当执行wait方法时,线程构建为节点加入wait set;当执行notify方法时,将wait set队头节点加入cxq,在释放锁时才去唤醒entry list队头节点竞争锁,即使没抢到锁构建为节点加入cxq时还会自旋,因此并不是entry list队头节点就一定能抢到锁,以此来实现非公平锁;当entry list为空时,将cxq栈中的节点加入entry list队列(后进入cxq的节点会被先唤醒)

在膨胀为重量级锁时有四种情况,如果状态为已膨胀则直接返回object monitor对象;如果状态为膨胀中,说明其他线程正在膨胀,等待会,下次循环进入已膨胀的逻辑;如果状态为轻量级锁膨胀或无锁膨胀,都会去创建object monitor对象,set一些重要属性,并CAS去将mark word替换为指向该object monitor

重量级锁在最终挂起前会进行固定自旋和自适应自旋(最近竞争小就增加自旋次数;竞争多就减少自旋次数)

最后(不要白嫖,一键三连求求拉~)

本篇文章被收入专栏 由点到线,由线到面,深入浅出构建Java并发编程知识体系,感兴趣的同学可以持续关注喔

本篇文章笔记以及案例被收入 gitee-StudyJavagithub-StudyJava 感兴趣的同学可以stat下持续关注喔~

案例地址:

Gitee-JavaConcurrentProgramming/src/main/java/B_synchronized

Github-JavaConcurrentProgramming/src/main/java/B_synchronized

有什么问题可以在评论区交流,如果觉得菜菜写的不错,可以点赞、关注、收藏支持一下~

关注菜菜,分享更多干货,公众号:菜菜的后端私房菜

本文由博客一文多发平台 OpenWrite 发布!

标签:00,Synchronized,00000000,lock,object,原理图,mark,线程,搞懂
From: https://www.cnblogs.com/caicaiJava/p/17683246.html

相关文章

  • 10分钟从源码级别搞懂AQS(AbstractQueuedSynchronizer)
    10分钟从源码级别搞懂AQS(AbstractQueuedSynchronizer)前言上篇文章15000字、6个代码案例、5个原理图让你彻底搞懂Synchronized有说到synchronized由objectmonitor实现的objectmonitor中由cxq栈和entrylist来实现阻塞队列,waitset实现等待队列,从而实现synchronized的等待/通知......
  • 关于synchronized
    关于synchronizedsynchronized是java中的关键字,可以在需要线程安全的业务场景中进行使用,保证线程安全,它是利用锁机制来实现同步的。synchronized锁对象和锁类对象锁:每个实例都会有一个monitor对象,即Java对象的锁,类的对象可以有多个,所以每个对象有其独立的对象锁,互不干扰......
  • synchronized关键字
    synchronized方法声明时使用,放在范围操作符(public等)之后,返回类型声明(void等)之前。一次只能有一个线程进入该方法,其他线程想要调用该方法,只能排队等候,当前线程(就是在synchronized方法内部的线程)执行完该方法后,别的线程才能进入。publicsynchronizedvoidfunc(){//TOD......
  • 使用synchronized关键字来同步多个线程操作同一个文件
    使用synchronized关键字来同步多个线程操作同一个文件importjava.io.FileWriter;importjava.io.IOException;publicclassFileSyncExample{privatestaticObjectfile=newObject();publicstaticvoidmain(String[]args)throwsInterruptedException{......
  • 创建多线程继承Thread和实现Runnable以及synchronized的注意事项
    关于创建多线程继承Thread和实现Runnable以及synchronized的注意事项以下是利用多线程模拟购票的代码publicclassSell{publicstaticvoidmain(String[]args){Ticketticket=newTicket();Ticketticket1=newTicket();ticket.star......
  • 20,000+ 字,彻底搞懂 Kafka!
    1、为什么有消息系统1、解耦合2、异步处理例如电商平台,秒杀活动。一般流程会分为:风险控制库存锁定生成订单短信通知更新数据通过消息系统将秒杀活动业务拆分开,将不急需处理的业务放在后面慢慢处理;流程改为:风险控制库存锁定消息系统生成订单短信通知更新数据......
  • 人体感应太阳能灯原理图详细讲解
    人体感应太阳能灯原理图详细讲解三河凡科科技飞讯教学篇,人体感应太阳能灯是一种利用太阳能源供电,通过人体红外线感应技术实现智能控制灯源开关的照明设备。其原理是利用太阳能板将太阳能转化为电能,通过对电池的储存和管理,将电能存储在电池中,作为灯源使用时的电力供应。同时,通过人......
  • 设计原理图:FMC141-四路 250Msps 16bits AD FMC子卡
     一、产品概述:   本板卡基于 FMC 标准板卡,实现 4 路 16-bit/250Msps ADC 功能。遵循 VITA 57 标准,板卡可以直接与xilinx公司或者本公司 FPGA 载板连接使用。板卡 ADC 器件采用 ADI 公司 AD9467 芯片,用户可以通过 FMC 接口配置芯片工作状......
  • 高速信号处理处理卡设计原理图:501-基于TMS320C6670的软件无线电核心板
    基于TMS320C6670的软件无线电核心板一、板卡概述     北京太速科技自主研发的TMS320C6670核心板,采用TI KeyStone系列的四核定点/浮点DSP TMS320C6670作主处理器。板卡引出处理器的全部信号引脚,便于客户二次开发,降低了硬件的开发难度和时间成本。板卡满足工......
  • 【pytorch】目标检测:一文搞懂如何利用kaggle训练yolov5模型
    笔者的运行环境:python3.8+pytorch2.0.1+pycharm+kaggle。yolov5对python和pytorch版本是有要求的,python>=3.8,pytorch>=1.6。yolov5共有5种类型n\s\l\m\x,参数量依次递增,对训练设备的要求也是递增。本文以yolov5_6s为切入点,探究yolov5如何在实战种运用。1.数据集的准备roboflow......