首页 > 其他分享 >Sea Fog Related Work

Sea Fog Related Work

时间:2023-09-03 15:32:45浏览次数:37  
标签:Sea Related Fog fog sea CNN 海雾 cloud

1、Dual-Branch Neural Network for Sea Fog Detection in Geostationary Ocean Color Imager

本文提出了一种 DB-SFNet 来实现准确和全面的海雾检测。 所提出的dual-branch sea fog detection network (DB-SFNet) DB-SFNet 由知识提取模块和双分支可选编码解码模块组成。 这两个模块共同从视觉和统计领域中提取判别特征。

The proposed DB-SFNet is composed of a knowledge extraction module and a dual-branch optional encoding decoding module. The two modules jointly extract discriminative features from both visual and statistical domains.

Y. Zhou, K. Chen and X. Li, "Dual-Branch Neural Network for Sea Fog Detection in Geostationary Ocean Color Imager," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-17, 2022, Art no. 4208617, doi: 10.1109/TGRS.2022.3196177.

2、A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection

本研究提出了一种用于白天海雾检测的 scSE-LinkNet 模型,该模型利用残差块到编码器特征图和注意模块,通过考虑节点的光谱和空间信息来学习海雾数据的特征。

This study proposes a scSE-LinkNet model for daytime sea fog detection that leverages residual blocks to encoder feature maps and attention module to learn the features of sea fog data by considering spectral and spatial information of nodes.

Guo X, Wan J, Liu S, et al. A scse-linknet deep learning model for daytime sea fog detection[J]. Remote Sensing, 2021, 13(24): 5163.

3、

此外,许多研究采用了不同的方法来使用机器学习进行海雾检测。 这包括诸如期望最大化算法 (EM) [21] 和决策树 (DT) [22] 之类的方法来精确区分层云和海雾。 虽然机器学习的引入进一步厘清了层云和海雾的界限,但由于检测结果的转化和可视化,过程更加繁琐。

Additionally, a number of studies have taken a different approach for sea fog detection using machine learning. This includes methods such as the expectation maximization algorithm (EM) [21] and decision tree (DT) [22] to precisely differentiate between stratus and sea fog. Although the introduction of machine learning further clarifies the stratus and sea fog boundaries, the process is more cumbersome because of the transformation and visualization of the detection results.

[21] Shin, D.; Kim, J.H. A New Application of Unsupervised Learning to Nighttime Sea Fog Detection. Asia Pac. J. Atmos. Sci. 201854, 527–544. [Google Scholar] [CrossRef][Green Version

[22] Kim, D.; Park, M.S.; Park, Y.J.; Kim, W. Geostationary Ocean Color Imager (GOCI) Marine Fog Detection in Combination with Himawari-8 Based on the Decision Tree. Remote Sens. 202012, 149. [Google Scholar] [CrossRef][Green Version]

4、Fast Cloud Segmentation Using Convolutional Neural Networks

本文提出了一种新的基于深度学习的云分类方法。 依靠卷积神经网络 (CNN) 架构进行图像分割,提出的云分割 CNN (CS-CNN) 同时对场景的所有像素进行分类,而不是单独分类

This paper proposes a novel cloud classification method based on deep learning. Relying on a Convolutional Neural Network (CNN) architecture for image segmentation, the presented Cloud Segmentation CNN (CS-CNN), classifies all pixels of a scene simultaneously rather than individually.

Drönner J, Korfhage N, Egli S, et al. Fast cloud segmentation using convolutional neural networks[J]. Remote Sensing, 2018, 10(11): 1782.

5、Sea Fog Identification from GOCI Images Using CNN Transfer Learning Models

本研究提出了一种通过应用卷积神经网络传输学习 (CNN-TL) 模型使用同步海洋彩色成像仪 (GOCI) 数据识别海雾的方法。 在这项研究中,VGG19 和 ResNet50 是预训练的 CNN 模型,因其高识别性能而被使用。

This study proposes an approaching method of identifying sea fog by using Geostationary Ocean Color Imager (GOCI) data through applying a Convolution Neural Network Transfer Learning (CNN-TL) model. In this study, VGG19 and ResNet50, pre-trained CNN models, are used for their high identification performance.

6、Sea fog detection based on unsupervised domain adaptation

我们提出了一种无监督域自适应方法来桥接丰富的标记陆雾数据和未标记海雾数据,以实现海雾检测。

we propose an unsupervised domain adaptation method to bridge the abundant labeled land fog data and the unlabeled sea fog data to realize the sea fog detection

7、

例如,基于从中国安徽省收集的 Himawari-8 标准数据 (HSD8),卷积神经网络 (CNN) 用于雾图像分类。25 Qu 等人 26 使用深度卷积神经网络 (DCNN) 进行云检测任务 基于FY-3D/MERSI和EOS/MODIS数据。

For example, Convolutional Neural Network (CNN) was used in fog images classification based on Himawari-8 Standard Data (HSD8) collected from Anhui Province, China.[25] Qu et al.[26] used Deep Convolutional Neural Network (DCNN) for cloud detection task based on data of FY-3D/MERSI and EOS/MODIS.

[25] Deep convolutional neural network for fog detection.

[26] Research on the cloud detection model of FY3D/MERSI and EOS/MODIS based on deep learning


8、Daytime Sea Fog Detection Based on a Two-Stage Neural Network

针对这一难题,提出了一种基于两阶段深度学习策略的黄渤海白天海雾检测新方法。 我们首先利用全连接网络将晴朗的天空与海雾和云层分开。 然后,使用卷积神经网络在 16 个 Advanced Himawari Imager (AHI) 观测波段上提取低云和海雾之间的差异。

To address this difficulty, a new method based on a two-stage deep learning strategy was proposed to detect daytime sea fog in the Yellow Sea and Bohai Sea. We first utilized a fully connected network to separate the clear sky from sea fog and clouds. Then, a convolutional neural network was used to extract the differences between low clouds and sea fog on 16 Advanced Himawari Imager (AHI) observation bands.

Tang Y, Yang P, Zhou Z, et al. Daytime Sea Fog Detection Based on a Two-Stage Neural Network[J]. Remote Sensing, 2022, 14(21): 5570.

9、Cloud Image Retrieval for Sea Fog Recognition (CIR-SFR) Using Double Branch Residual Neural Network

因此,我们结合度量学习的优点,在深度学习 (DL) 框架中提出了一种用于海雾识别 (CIR-SFR) 的云图像检索方法。 CIR-SFR 包括特征提取模块和基于检索的 SFR 模块。 特征提取模块采用双分支残差神经网络(DBRNN)综合提取云图的全局和局部特征。 通过引入本地分支和使用激活掩码,DBRNN 可以专注于云图像中的感兴趣区域。 此外,通过引入多重相似性损失,将云图特征投影到语义空间,有效提高了海雾和低层云的辨别能力。

Thus, we propose a cloud image retrieval method for sea fog recognition (CIR-SFR) in a deep learning (DL) framework by combining the advantages of metric learning. CIR-SFR includes the feature extraction module and the retrieval-based SFR module. The feature extraction module adopts the double branch residual neural network (DBRNN) to comprehensively extract the global and local features of cloud images. By introducing local branches and using activation masks, DBRNN can focus on regions of interest in cloud images. Moreover, cloud image features are projected into the semantic space by introducing multisimilarity loss, which effectively improves the discrimination ability of sea fog and low-level clouds. or the retrieval-based SFR module, similar cloud images are retrieved from the cloud image dataset according to the distance in the feature space, and accurate SFR results are obtained by counting the percentage of various cloud image types in the retrieval results.

Hu T, Jin Z, Yao W, et al. Cloud Image Retrieval for Sea Fog Recognition (CIR-SFR) Using Double Branch Residual Neural Network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 3174-3186.

标签:Sea,Related,Fog,fog,sea,CNN,海雾,cloud
From: https://blog.51cto.com/u_16245483/7340736

相关文章

  • 向量搜索技术:基于Elasticsearch/PostgreSQL/Redis扩展的向量搜索数据库或独立向量搜索
    理论基础与研究向量数据库用于非结构化文本、图片、音频、视频搜索、推荐,将他们转换为数字向量表示来进行相似性(ANN)搜索。存储和搜索高维向量是其特征之一,通常采用高级索引技术和算法如HNSW,Annoy,或Faiss来实现。不同于SQL数据库,向量数据库更像nosql,用户接受使用sdk/API......
  • Seatunnel实践及相关报错总结
    写在前面:本人也属于小白,这篇文章只是个人使用和总结,可能有些地方理解片面或者有误,各位大神看到的话,可以留言指正,一定认真学习。同时发出来也只是想自己能做个笔记,便于后期整理。如果能帮刚使用seatunnel的朋友避一些坑,那就最好不过了。1、语法模块(官方文档摘抄)1.1source和sink源......
  • 查看es结构,es _search查询基础语法
    查看es结构,es_search查询基础语法http://xx.xx.xx.xx:9200/ ES地址car_info/_searchPOST{}POST{"query":{"match":{"carNo":"573702440"}}}{ "query":{"term":{......
  • Seata解决分布式事务
    简介Seata是阿里开源的一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。初始化数据库创建seata库,初始化脚本如下----------------------------------ThescriptusedwhenstoreModeis'db'----------------------------------thetablet......
  • Install elasticsearch-head: – for Elasticsearch 5.x
    RunningasapluginofElasticsearchInstallelasticsearch-head:–forElasticsearch5.x:sitepluginsarenotsupported.Runelasticsearch-head asastandaloneserverRunningwithbuiltinserverenable cors byadding http.cors.enabled:true inelasticsearc......
  • 深入探究Elasticsearch中的倒排索引技术
    在现代后端开发中,搜索引擎和数据检索是至关重要的功能。Elasticsearch作为一款开源的分布式搜索和分析引擎,其背后的核心技术之一就是倒排索引(InvertedIndex)。本篇博客将深入探讨倒排索引在Elasticsearch中的应用,以及如何利用这一技术来优化数据检索性能。什么是倒排索引?倒排索引是......
  • 大华智慧园区综合管理平台searchJson SQL注⼊漏洞
    漏洞简介大华智慧园区综合管理平台是一款综合管理平台,具备园区运营、资源调配和智能服务等功能。平台意在协助优化园区资源分配,满足多元化的管理需求,同时通过提供智能服务,增强使用体验。由于该平台未对用户输入数据做限制,攻击者可以直接将恶意代码拼接进SQL查询语句中,导致系统出......
  • Apache SeaTunnel 2.3.3 版本发布,CDC 支持 Schema Evolution!
    时隔两个月,ApacheSeaTunnel终于迎来大版本更新。此次发布的2.3.3版本在功能和性能上均有较大优化改进,其中大家期待已久的CDCSchemaevolution(DDL变更同步)、主键Split拆分、JDBCSink自动建表功能、SeaTunnelZeta引擎支持作业配置支持变量替换和传参等都是更新的亮......
  • Elasticsearch,Logstash和Kibana安装部署(ELK Stack)
    前言当今数字化时代,信息的快速增长使得各类组织和企业面临着海量数据的处理和分析挑战。在这样的背景下,ELKStack(Elasticsearch、Logstash和Kibana)作为一套强大的开源工具组合,成为了解决数据管理、搜索和可视化的首选方案。无论是监控日志、实时数据分析,还是构建仪表盘来监测......
  • Centos7 安装 seata1.7.0
    seata官网: https://seata.io/zh-cn/index.htmlseata下载地址:   https://github.com/seata/seata 1、下载seata包wgethttps://github.com/seata/seata/releases/download/v1.7.0/seata-server-1.7.0.tar.gz2、解压tarzxvfseata-server-1.7.0.tar.gz-C/......