首页 > 其他分享 >CF1862E Kolya and Movie Theatre 题解

CF1862E Kolya and Movie Theatre 题解

时间:2023-08-29 23:45:52浏览次数:43  
标签:Kolya int 题解 电影 long 反悔 Movie include

先注意到我们娱乐值损耗的多少只与最后一场电影有关系,所以假设最后一场电影看的下标为 \(k\),那么最后就要减去 \(d \times k\)。

得出这个性质之后开个小根堆反悔贪心即可,首先 \(a_i<0\) 的没必要考虑,对于 \(a_i>0\) 的,如果还没到 \(m\) 场电影,我们就直接往里塞就可以,如果到了,我们就进行反悔操作,取出已选的贡献最小的那场电影,然后看看会不会更优,如果会的话就加进去。

算是反悔贪心板子题,时间复杂度 \(O(n\log n)\)。

然后就是一定要记得开 long long,吃了两发。

#include <cstdio>
#include <queue>
#include <algorithm>

typedef long long ll;

int t;
int n,m,d;
int a[200005];

void solve() {
	scanf("%d",&t);
	while(t--) {
		scanf("%d%d%d",&n,&m,&d);
		for(int i=1;i<=n;i++) scanf("%d",&a[i]);
		std::priority_queue<int> q;
		int tot=0;
		ll ans=0,sum=0;
		for(int i=1;i<=n;i++) {
			if(a[i]<0) continue;
			if(tot<m) {
				tot++;
				q.push(-a[i]);//大根堆每次存相反数作用就是小根堆
				sum+=a[i];
			} else if(-q.top()<a[i]) {//反悔操作
				sum+=q.top();
				q.pop();
				sum+=a[i];
				q.push(-a[i]);
			}
			ans=std::max(ans,sum-1ll*d*i);
		}
		printf("%lld\n",ans);
	}
}

int main() {
	solve();
	return 0;
}

标签:Kolya,int,题解,电影,long,反悔,Movie,include
From: https://www.cnblogs.com/Scorilon/p/17666137.html

相关文章

  • P8675 [蓝桥杯 2018 国 B] 搭积木 题解
    总述此题用区间dp解决,二维前缀和优化。朴素做法阶段:自上而下数每一层。状态:\(dp_{i,l,r}\)表示自上而下数第\(i\)行中在\([l,r]\)摆积木的方案数。状态转移方程:根据题意可知,若要在\([l,r]\)中摆积木,那么\([l,r]\)中不允许有\(\tt{X}\),而第\(i\)层的\([l,r]\)......
  • P7809 [JRKSJ R2] 01 序列 题解
    对于第二种操作,很容易想到只有\(1\)或\(2\)两种答案,若该区间内存在\(01\)这个子序列,那么答案为\(2\)反之为\(1\).可以通过对该\(01\)串做一个前缀和,若出现\(01\)这个子序列就累加,最后判断左右端点是否相等即可,时间复杂度\(O(n)\).对于第一种操作,\(\text{Subtest1}......
  • CF1833D Flipper 题解
    赛场上思路出来了但是代码没调出来。首先考虑右端点,很明显,要让操作后的序列字典序尽量地大,那么就要使操作后的序列第一个数尽量地大,考虑\(n\)或\(n-1\),如果\(n\)在原序列的第一个位置,那么此时无论怎么调整都无法使得它在新序列的第一个位置,此时就要考虑让\(n-1\)在新序列......
  • UVA10054 The Necklace题解
    题意给定一个无向图,其中至多有\(50\)个结点,求是否有欧拉回路。题解很明显就是一个无向图求欧拉回路的板子,我们用\(\tt{Hierholzer}\),先说存图,要明确的一个点是这个无向图里是有可能有重边的,所以我们要注意记录的时候不应是单独地记录某一条边是否存在,而是要记录某一条边的数......
  • UVA967的题解
    设\(check_i\)为\(1\simn\)中满足题意的数的数量。显然答案为\(check_j-check_{i-1}\)。注意到\(check\)能直接暴力求出来。那么就可以先把\(10^6\)范围内的所有质数求出来,然后所有数跑一遍,每个数都去旋转得出所有数后判断是否均为质数,记录下来。代码很好写。#incl......
  • 一些奇怪的题的题解
    给定\(n\),求:\[\sum_{i=1}^n\sum_{j=1}^n\frac{i+j}{\gcd(i,j)}\]思路分析:先化式子:\[\begin{aligned}\sum_{i=1}^n\sum_{j=1}^n\frac{i+j}{\gcd(i,j)}&=\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^n\frac{i+j}{d}[\gcd(i,j)=d]\\&=\sum_{d=1}^n\s......
  • CF1774 题解
    A考虑在所有\(0\)前添加正号,在\(1\)前轮流添加正负号即可。B首先根据抽屉原理,我们可以取出最多的颜色,个数记为\(mx\),然后其余颜色可以填在\(mx\)的两两中间,最少要有\((mx-1)(k-1)\)个空位。但是只是必要的,而不是充分的。考虑有多个最大值的情况,发现这些不是作为分界......
  • RTSP/Onvif视频服务器EasyNVR视频平台设备在线但通道无法播放的问题解决方案
    EasyNVR是基于RTSP/Onvif协议的视频平台,可支持将接入的视频流进行全平台、全终端的分发,分发的视频流包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等格式。为了满足用户的集成与二次开发需求,我们也提供了丰富的API接口供用户调用。有需要的用户可参照官方接口文档进行操作。......
  • P3888 题解
    problem&blog。这怎么评到紫上去的啊?差不多就个上位绿吧/qd。首先出题人非常low。为什么这样说呢?因为\(nm\le50,m\len\)就是在说\(m\le7\),出题人为了不让你一眼秒掉这一题,就用这种猥琐的方法写数据范围,是不是很傻逼呢。然后就是状压DP板板题了,判断合法状态只需要......
  • 安防视频监控平台EasyCVR视频集中存储平台接入RTSP设备出现离线情况的问题解决方案
    安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安防视频监控的能力,也具备接入AI智能分析的......