首页 > 其他分享 >使用训练工具

使用训练工具

时间:2023-08-26 09:02:30浏览次数:40  
标签:训练 torch ids dataset 使用 import 工具 data model

HuggingFace上提供了很多已经训练好的模型库,如果想针对特定数据集优化,那么就需要二次训练模型,并且HuggingFace也提供了训练工具。

一.准备数据集
1.加载编码工具
加载hfl/rbt3编码工具如下所示:

def load_encode():
    # 1.加载编码工具
    # 第6章/加载tokenizer
    from transformers import AutoTokenizer
    pretrained_model_name_or_path = r'L:\20230713_HuggingFaceModel\rbt3'
    tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
    # 第6章/试编码句子
    result = tokenizer.batch_encode_plus(
        ['明月装饰了你的窗子', '你装饰了别人的梦'],
        truncation=True,
    )
    print(result)

输出结果如下所示:

{'input_ids': [[101, 3209, 3299, 6163, 7652, 749, 872, 4638, 4970, 2094, 102], [101, 872, 6163, 7652, 749, 1166, 782, 4638, 3457, 102]], 
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}

2.准备数据集
ChnSentiCorp是谭松波收集整理了一个较大规模的酒店评论语料。7000多条酒店评论数据,5000多条正向评论,2000多条负向评论[3]。

def f1(data):
    # 通过编码工具将文字编码为数据
    from transformers import AutoTokenizer
    from pathlib import Path
    pretrained_model_name_or_path = r'L:\20230713_HuggingFaceModel\rbt3'
    tokenizer = AutoTokenizer.from_pretrained(Path(f'{pretrained_model_name_or_path}'))
    return tokenizer.batch_encode_plus(data['text'], truncation=True)

def f2(data):
    # 过滤太长的句子
    return [len(i) <= 512 for i in data['input_ids']]

def load_dataset_from_disk():
    # 方法1:从HuggingFace加载数据集,然后本地保存
    # from datasets import load_dataset
    # dataset = load_dataset(path='seamew/ChnSentiCorp')
    # print(dataset)
    # dataset.save_to_disk(dataset_dict_path='./data/ChnSentiCorp')

    # 方法2:从本地加载数据集
    from datasets import load_from_disk
    mode_name_or_path = r'L:\20230713_HuggingFaceModel\ChnSentiCorp'
    dataset = load_from_disk(mode_name_or_path)
    # 缩小数据规模,便于测试
    dataset['train'] = dataset['train'].shuffle().select(range(2000))
    dataset['test'] = dataset['test'].shuffle().select(range(100))

    # batched=True表示批量处理
    # batch_size=1000表示每次处理1000个样本
    # num_proc=8表示使用8个线程操作
    # remove_columns=['text']表示移除text列
    dataset = dataset.map(f1, batched=True, batch_size=1000, num_proc=8, remove_columns=['text'])

    return dataset

由于模型对输入文本的长度有限制,不能处理长度大于512词的文本,因此把长度超过512个词的句子过滤掉。过滤前的dataset为:

DatasetDict({
    train: Dataset({
        features: ['label', 'input_ids', 'token_type_ids', 'attention_mask'],
        num_rows: 2000
    })
    validation: Dataset({
        features: ['label', 'input_ids', 'token_type_ids', 'attention_mask'],
        num_rows: 1200
    })
    test: Dataset({
        features: ['label', 'input_ids', 'token_type_ids', 'attention_mask'],
        num_rows: 100
    })
})

过滤后的dataset为:

DatasetDict({
    train: Dataset({
        features: ['label', 'input_ids', 'token_type_ids', 'attention_mask'],
        num_rows: 1982
    })
    validation: Dataset({
        features: ['label', 'input_ids', 'token_type_ids', 'attention_mask'],
        num_rows: 1190
    })
    test: Dataset({
        features: ['label', 'input_ids', 'token_type_ids', 'attention_mask'],
        num_rows: 99
    })
})

二.定义模型和训练工具
1.加载预训练模型
加载预训练模型代码如下所示:

def load_pretrained_mode():
    """
    加载预训练模型
    """
    from transformers import AutoModelForSequenceClassification
    import torch
    pretrained_model_name_or_path = r'L:\20230713_HuggingFaceModel\rbt3'
    model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path, num_labels=2)
    # 统计模型参数量
    print(sum([i.nelement() for i in model.parameters()]) / 10000)

    # 模拟一批数据
    data = {
        'input_ids': torch.ones(4, 10, dtype=torch.long),
        'token_type_ids': torch.ones(4, 10, dtype=torch.long),
        'attention_mask': torch.ones(4, 10, dtype=torch.long),
        'labels': torch.ones(4, dtype=torch.long)
    }
    # 模型试算
    out = model(**data)
    print(out['loss'], out['logits'].shape)

输出结果如下所示:

3847.8338
tensor(0.3911, grad_fn=<NllLossBackward0>) torch.Size([4, 2])

(1)hfl/rbt3模型
由哈尔滨工业大学讯飞联合实验室(HFL)基于中文文本数据训练的BERT模型。
(2)model数据结构

2.定义评价函数
定义评价函数代码如下所示:

def compute_metrics(eval_pred):
    """
    定义评价函数
    """
    from datasets import load_metric
    metric = load_metric('accuracy')
    logits, labels = eval_pred
    logits = logits.argmax(axis=1)
    return metric.compute(predictions=logits, references=labels)
    
if __name__ == '__main__':
    # 定义评价函数
    # 模拟输出
    from transformers.trainer_utils import EvalPrediction
    import numpy as np
    eval_pred = EvalPrediction(
        predictions=np.array([[0, 1], [2, 3], [4, 5], [6, 7]]),
        label_ids=np.array([1, 1, 0, 1]),
    )
    accuracy = compute_metrics(eval_pred)
    print(accuracy)

输出结果如下所示:

{'accuracy': 0.75}

3.定义训练超参数
可通过TrainingArguments对象来封装超参数:

#第6章/定义训练参数
from transformers import TrainingArguments
#定义训练参数
args = TrainingArguments(
#定义临时数据保存路径
output_dir='./output_dir',
#定义测试执行的策略,可取值为no、epoch、steps
evaluation_strategy='steps',
#定义每隔多少个step执行一次测试
eval_steps=30,
#定义模型保存策略,可取值为no、epoch、steps
save_strategy='steps',
#定义每隔多少个step保存一次
save_steps=30,
#定义共训练几个轮次
num_train_epochs=1,
#定义学习率
learning_rate=1e-4,
#加入参数权重衰减,防止过拟合
weight_decay=1e-2,
#定义测试和训练时的批次大小
per_device_eval_batch_size=16,
per_device_train_batch_size=16,
#定义是否要使用GPU训练
no_CUDA=True,
)

4.定义训练器
Trainer参数包括要训练的模型、超参数对象、训练和验证数据集、评价函数,以及数据整理函数。

from transformers import Trainer
from transformers.data.data_collator import DataCollatorWithPadding
#定义训练器
trainer = Trainer(
    model=model,
    args=args,
    train_dataset=dataset['train'],
    eval_dataset=dataset['test'],
    compute_metrics=compute_metrics,
    data_collator=DataCollatorWithPadding(tokenizer),
)

5.数据整理函数介绍
通过DataCollatorWithPadding对象把一个批次中长短不一的句子补充成统一的长度(对句子的尾部补充PAD),长度取决于这个批次中最长的句子有多长,如下所示:

def test_DataCollator(tokenizer, dataset):
    """
    数据整理函数
    """
    from transformers import DataCollatorWithPadding
    # 第6章/测试数据整理函数
    data_collator = DataCollatorWithPadding(tokenizer)
    # 获取一批数据
    data = dataset['train'][:5]
    # 输出这些句子的长度
    for i in data['input_ids']:
        print(len(i))
    # 调用数据整理函数
    data = data_collator(data)
    # 查看整理后的数据
    for k, v in data.items():
        print(k, v.shape)

if __name__ == '__main__':
    from transformers import AutoTokenizer
    from pathlib import Path
    pretrained_model_name_or_path = r'L:\20230713_HuggingFaceModel\rbt3'
    tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=Path(f'{pretrained_model_name_or_path}'))
    # 得到dataset
    dataset = load_dataset_from_disk()
    dataset = dataset.filter(f2, batched=True, batch_size=1000, num_proc=8)
    test_DataCollator(tokenizer, dataset)

结果输出如下所示:

175
136
121
34
160
input_ids torch.Size([5, 175])
token_type_ids torch.Size([5, 175])
attention_mask torch.Size([5, 175])
labels torch.Size([5])

三.训练和测试
1.训练模型
评价和训练模型代码如下所示:

trainer.evaluate() #评价模型
trainer.train()    #训练模型

在output_dir文件夹中可以找到4个文件夹,即checkpoint-30、checkpoint-60、checkpoint-90、checkpoint-120,分别是对应步数保存的检查点,每个文件夹中都有一个PyTorch_model.bin文件,这个文件就是模型的参数。每个文件夹包括文件如下所示:

config.json
optimizer.pt
pytorch_model.bin
rng_state.pth
scheduler.pt
trainer_state.json
training_args.bin

运行结果格式如下所示:

{'eval_loss': 0.48926153779029846, 'eval_accuracy': 0.8181818181818182, 'eval_runtime': 62.1286, 'eval_samples_per_second': 1.593, 'eval_steps_per_second': 0.113, 'epoch': 0.48}

如果模型在训练过程中断了,那么可以从中间检查点继续训练,如下所示:

trainer.train(resume_from_checkpoint='./output_dir/checkpoint-90')

2.模型的保存和加载
模型的保存和加载代码如下所示:

# 手动保存模型参数
trainer.save_model(output_dir='./output_dir/save_model')
# 手动加载模型参数
import torch
model.load_state_dict(torch.load('./output_dir/save_model/PyTorch_model.bin'))

3.使用模型预测
使用模型预测代码如下所示:

# 在模型的评估模式下,模型不再对输入进行梯度计算,并且一些具有随机性的操作(如Dropout)会被固定
model.eval()
for i, data in enumerate(trainer.get_eval_dataloader()):
    data = data.to('cuda')
    out = model(**data)
    out = out['logits'].argmax(dim=1)
    for j in range(8):
        print(tokenizer.decode(data['input_ids'][j], skip_special_tokens=True))
        print('label=', data['labels'][j].item())
        print('predict=', out[j].item())
    break

结果输出如下所示:

酒 店 有 点 偏 , ( 没 有 地 铁 站 ) , 19 : 30 后 就 没 有 shuttle bus 了 。 大 堂 很 小 , 也 没 有 什 么 设 施 。 不 过 , 房 间 很 好 , 也 有 海 景 。
label= 1
predict= 0
哈 哈 哈 哈..... 居 然 还 可 以 继 续 评 论 啊 那 就 给 满 分 了 下 次 去 了 继 续 住 忘 记 说 了, 有 房 内 按 摸 的 服 务 的 可 惜 没 时 间 去 试 了, 下 次 去 还 会 住 的......
label= 1
predict= 0
......
也 许 这 不 算 一 个 很 好 的 理 由, 但 是 我 之 所 以 喜 欢 读 书 而 不 是 看 网 上 的 资 料 什 么 的, 就 是 喜 欢 闻 着 书 香. 这 本 书 可 能 是 印 刷 的 油 墨 不 好 还 是 什 么 原 因, 感 觉 臭 臭 的 不 好 闻. 里 面 是 一 些 关 于 中 式 英 语 的 小 趣 闻, 有 些 小 乐 趣, 但 感 觉 对 于 有 浓 重 中 式 思 维 习 惯 说 英 说 的 人 来 说 才 比 较 有 点 用 处.
label= 0
predict= 0

参考文献:
[1]https://huggingface.co/datasets/seamew/ChnSentiCorp/tree/main
[2]文本数据集的下载与各种操作:https://blog.csdn.net/Wang_Dou_Dou_/article/details/127459760
[3]ChnSentiCorp:https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/ChnSentiCorp_htl_all/intro.ipynb
[4]https://github.com/ai408/nlp-daily-record/tree/main/20230625_HuggingFace自然语言处理详解

标签:训练,torch,ids,dataset,使用,import,工具,data,model
From: https://www.cnblogs.com/shengshengwang/p/17658314.html

相关文章

  • 在maven中使用tomcat插件运行项目
    1.在pom.xml中配置插件<plugin><groupId>org.apache.tomcat.maven</groupId><artifactId>tomcat7-maven-plugin</artifactId><version>2.2</version><configuration>......
  • vue后台使用富文本插件的问题(vue-quill-editor)
    1、之前用的wangeditor富文本插件,使用是灰常方便了,但问题多多,插入视频出现问题,有些图片回显也有问题,不显示什么的然后在网上又找了个vue-quill-editor,图片回显什么的是没问题了,就是有点难用,下面来配置一下,记录如何使用vue-quill-editor的插入超链接、图片、视频功能。   ......
  • Acrobat增效工具Quite Imposing Plus下载及安装激活教程
    QuiteImposingPlus增效工具是AdobeAcrobatPDF最常用的拼版排版编辑插件。该插件具备体积小,兼容性好,简单易懂门槛低的优点。QuiteImposingPlus可以用来复制页面、删除页面、移动页面、调整页面大小、书册拼版,足以应付办公PDF页面编辑和书册排版的需求。2023版AdobeAcr......
  • 使用 AutoGPTQ 和 transformers 让大语言模型更轻量化
    大语言模型在理解和生成人类水平的文字方面所展现出的非凡能力,正在许多领域带来应用上的革新。然而,在消费级硬件上训练和部署大语言模型的需求也变得越来越难以满足。......
  • 图形化工具 Graphviz 介绍
    GraphVisualization图形可视化是一种将结构信息表示为抽象图形和网络的图表的方法。自动绘图在软件工程、数据库和网页设计、网络以及许多其他领域的可视化界面中有许多重要的应用。Graphviz是开源图形可视化软件。它有几个主要的图形布局程序。有关一些示例布局,请参阅图库。它......
  • shell命令概述 Shell作用:命令解释器 介于操作系统内核与用户之间,负责解释命令行 获得
    shell命令概述Shell作用:命令解释器介于操作系统内核与用户之间,负责解释命令行获得命令帮助内部命令help命令的“--help”选项使用man命令阅读手册页命令行编辑的几个辅助操作Tab键:自动补齐反斜杠“\”:强制换行快捷键Ctrl+U:清空至行首快捷键Ctrl+K:清空至行尾快捷键Ctr......
  • shell命令概述 Shell作用:命令解释器 介于操作系统内核与用户之间,负责解释命令行 获得
    shell命令概述Shell作用:命令解释器介于操作系统内核与用户之间,负责解释命令行获得命令帮助内部命令help命令的“--help”选项使用man命令阅读手册页命令行编辑的几个辅助操作Tab键:自动补齐反斜杠“\”:强制换行快捷键Ctrl+U:清空至行首快捷键Ctrl+K:清空至行尾快捷键Ctr......
  • spring cache 学习——@CachePut 使用详解
    springcache学习——@CachePut使用详解 1.功能说明当需要在不影响方法执行的情况下更新缓存时,可以使用@CachePut,也就是说,被@CachePut注解的缓存方法总是会执行,而且会尝试将结果放入缓存(当然,是否真的会缓存还跟一些注解参数有关,比如:unless参数)。@CachePut跟@Ca......
  • spring cache 学习 —— @Cacheable 使用详解
    springcache学习——@Cacheable使用详解 1.功能说明@Cacheable注解在方法上,表示该方法的返回结果是可以缓存的。也就是说,该方法的返回结果会放在缓存中,以便于以后使用相同的参数调用该方法时,会返回缓存中的值,而不会实际执行该方法。注意,这里强调了一点:参数......
  • 列举出所有的伪类使用方式
    CSS伪类(Pseudo-classes)是用于选择元素在特定状态下的样式的一种机制。它们通过在选择器后面使用冒号":"来表示,并与普通的元素选择器结合使用。以下是一些常见的CSS伪类及其功能:1.:hover:当鼠标悬停在元素上时应用的样式。a:hover{color:red;}2.:active:当元素被激活(被......