总结
这次是最后一次打卡了
进行一个总结 本次内容为梳理与最后的automl部分
本次比赛过程我使用了决策树 随机森林 lgb xgb catboost automl 进行训练
最终
决策树到达分数——》0.79
automl到达分数——》0.79
lgb xgb catboost 到达分数——》0.63
随机森林由于调参问题只能到达可怜的0.4
下面进行梳理
数据探索
本次打卡新增用户预测
先对于数据处理进行了探索
数据中包括
uuid——》用户id
eid——》访问行为id
udmap——》行为属性 (key1-key9——》不同的行为属性)
common_ts——》应用访问记录发生时间
x1-x8——》用户相关属性,匿名处理字段
target——》预测目标 是否为新增用户
可以得出uuid是无关特征 udmap是待处理特征
用户新增时间应该为连续数据?
对于数据的处理我们这里把数据先补齐,然后进行时间序列的处理 将udmap的值提取出来
这是每个用户的登陆习惯 所以提取eid的频次,再根据整个用户行为的标识时的判断进行取均值(例如新用户任务界面,进行此行为的人数不多但大部分都是新人,这就是一个很有效的信息)
单独将eid的频次进行计数 从而提取eid频次特征
再提取eid的标签特征,获取每个eid分组的目标值均值
使用dt.hour属性获取小时信息,但我觉得需要更改,将时间储存成连续的试试看
模型训练
使用过决策树:
baseline的决策树达到0.62的成绩
尝试过lightgbm,xgboost,catboost,本地训练分数较高,但实际提交效果差,正在进行调参
使用catboost进行训练 线下分数train0.86 test0.78 线上提交分数0.60583
模型训练过程:
采用K折交叉验证,分成5折
评估标准:
评估标准采用题目中的F1score
F1score:是精确率和召回率的调和平均数
MLbaseline解读
# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np
# 从 sklearn.tree 模块中导入 DecisionTreeClassifier 类
# DecisionTreeClassifier 用于构建决策树分类模型
from sklearn.tree import DecisionTreeClassifier
# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train_data = pd.read_csv('用户新增预测挑战赛公开数据/train.csv')
# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'test.csv'
test_data = pd.read_csv('用户新增预测挑战赛公开数据/test.csv')
# 3. 将 'udmap' 列进行 One-Hot 编码
# 数据样例:
# udmap key1 key2 key3 key4 key5 key6 key7 key8 key9
# 0 {'key1': 2} 2 0 0 0 0 0 0 0 0
# 1 {'key2': 1} 0 1 0 0 0 0 0 0 0
# 2 {'key1': 3, 'key2': 2} 3 2 0 0 0 0 0 0 0
# 在 python 中, 形如 {'key1': 3, 'key2': 2} 格式的为字典类型对象, 通过key-value键值对的方式存储
# 而在本数据集中, udmap实际是以字符的形式存储, 所以处理时需要先用eval 函数将'udmap' 解析为字典
# 具体实现代码:
# 定义函数 udmap_onethot,用于将 'udmap' 列进行 One-Hot 编码
def udmap_onethot(d):
v = np.zeros(9) # 创建一个长度为 9 的零数组
if d == 'unknown': # 如果 'udmap' 的值是 'unknown'
return v # 返回零数组
d = eval(d) # 将 'udmap' 的值解析为一个字典
for i in range(1, 10): # 遍历 'key1' 到 'key9', 注意, 这里不包括10本身
if 'key' + str(i) in d: # 如果当前键存在于字典中
v[i-1] = d['key' + str(i)] # 将字典中的值存储在对应的索引位置上
return v # 返回 One-Hot 编码后的数组
# 注: 对于不理解的步骤, 可以逐行 print 内容查看
# 使用 apply() 方法将 udmap_onethot 函数应用于每个样本的 'udmap' 列
# np.vstack() 用于将结果堆叠成一个数组
train_udmap_df = pd.DataFrame(np.vstack(train_data['udmap'].apply(udmap_onethot)))
test_udmap_df = pd.DataFrame(np.vstack(test_data['udmap'].apply(udmap_onethot)))
# 为新的特征 DataFrame 命名列名
train_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
test_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
# 将编码后的 udmap 特征与原始数据进行拼接,沿着列方向拼接
train_data = pd.concat([train_data, train_udmap_df], axis=1)
test_data = pd.concat([test_data, test_udmap_df], axis=1)
# 4. 编码 udmap 是否为空
# 使用比较运算符将每个样本的 'udmap' 列与字符串 'unknown' 进行比较,返回一个布尔值的 Series
# 使用 astype(int) 将布尔值转换为整数(0 或 1),以便进行后续的数值计算和分析
train_data['udmap_isunknown'] = (train_data['udmap'] == 'unknown').astype(int)
test_data['udmap_isunknown'] = (test_data['udmap'] == 'unknown').astype(int)
# 5. 提取 eid 的频次特征
# 使用 map() 方法将每个样本的 eid 映射到训练数据中 eid 的频次计数
# train_data['eid'].value_counts() 返回每个 eid 出现的频次计数
train_data['eid_freq'] = train_data['eid'].map(train_data['eid'].value_counts())
test_data['eid_freq'] = test_data['eid'].map(train_data['eid'].value_counts())
# 6. 提取 eid 的标签特征
# 使用 groupby() 方法按照 eid 进行分组,然后计算每个 eid 分组的目标值均值
# train_data.groupby('eid')['target'].mean() 返回每个 eid 分组的目标值均值
train_data['eid_mean'] = train_data['eid'].map(train_data.groupby('eid')['target'].mean())
test_data['eid_mean'] = test_data['eid'].map(train_data.groupby('eid')['target'].mean())
# 7. 提取时间戳
# 使用 pd.to_datetime() 函数将时间戳列转换为 datetime 类型
# 样例:1678932546000->2023-03-15 15:14:16
# 注: 需要注意时间戳的长度, 如果是13位则unit 为 毫秒, 如果是10位则为 秒, 这是转时间戳时容易踩的坑
# 具体实现代码:
train_data['common_ts'] = pd.to_datetime(train_data['common_ts'], unit='ms')
test_data['common_ts'] = pd.to_datetime(test_data['common_ts'], unit='ms')
# 使用 dt.hour 属性从 datetime 列中提取小时信息,并将提取的小时信息存储在新的列 'common_ts_hour'
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
test_data['common_ts_hour'] = test_data['common_ts'].dt.hour
# 8. 加载决策树模型进行训练(直接使用sklearn中导入的包进行模型建立)
clf = DecisionTreeClassifier()
# 使用 fit 方法训练模型
# train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1) 从训练数据集中移除列 'udmap', 'common_ts', 'uuid', 'target'
# 这些列可能是特征或标签,取决于数据集的设置
# train_data['target'] 是训练数据集中的标签列,它包含了每个样本的目标值
clf.fit(
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1), # 特征数据:移除指定的列作为特征
train_data['target'] # 目标数据:将 'target' 列作为模型的目标进行训练
)
# 9. 对测试集进行预测,并保存结果到result_df中
# 创建一个DataFrame来存储预测结果,其中包括两列:'uuid' 和 'target'
# 'uuid' 列来自测试数据集中的 'uuid' 列,'target' 列将用来存储模型的预测结果
result_df = pd.DataFrame({
'uuid': test_data['uuid'], # 使用测试数据集中的 'uuid' 列作为 'uuid' 列的值
'target': clf.predict(test_data.drop(['udmap', 'common_ts', 'uuid'], axis=1)) # 使用模型 clf 对测试数据集进行预测,并将预测结果存储在 'target' 列中
})
# 10. 保存结果文件到本地
# 将结果DataFrame保存为一个CSV文件,文件名为 'submit.csv'
# 参数 index=None 表示不将DataFrame的索引写入文件中
result_df.to_csv('submit.csv', index=None)