点击查看代码
import torch
from torch import nn
from d2l import torch as d2l
batch_size, max_len = 512, 64
train_iter, vocab = d2l.load_data_wiki(batch_size, max_len)
net = d2l.BERTModel(len(vocab), num_hiddens=128, norm_shape=[128],
ffn_num_input=128, ffn_num_hiddens=256, num_heads=2,
num_layers=2, dropout=0.2, key_size=128, query_size=128,
value_size=128, hid_in_features=128, mlm_in_features=128,
nsp_in_features=128)
devices = d2l.try_all_gpus()
print(devices)
loss = nn.CrossEntropyLoss()
# 计算遮蔽语言模型和下一句子预测任务的损失
#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X, segments_X, valid_lens_x,
pred_positions_X, mlm_weights_X, mlm_Y, nsp_y):
# 前向传播
_, mlm_Y_hat, nsp_Y_hat = net(tokens_X, segments_X, valid_lens_x.reshape(-1), pred_positions_X)
# 计算遮蔽语言模型损失
# * mlm_weights_X.reshape(-1, 1) 不去计算pad的loss
mlm_l = loss(mlm_Y_hat.reshape(-1, vocab_size), mlm_Y.reshape(-1)) * mlm_weights_X.reshape(-1, 1)
# ?
mlm_l = mlm_l.sum() / (mlm_weights_X.sum() + 1e-8)
# 计算下一句子预测任务的损失
nsp_l = loss(nsp_Y_hat, nsp_y)
# BERT预训练的最终损失是遮蔽语言模型损失和下一句预测损失的和
l = mlm_l + nsp_l
return mlm_l, nsp_l, l
def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
# 当迭代次数或者epoch足够大的时候,我们通常会使用nn.DataParallel函数来用多个GPU来加速训练
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
trainer = torch.optim.Adam(net.parameters(), lr=0.01)
step, timer = 0, d2l.Timer()
# animator = d2l.Animator(xlabel='step', ylabel='loss', xlim=[1, num_steps], legend=['mlm', 'nsp'])
# 遮蔽语言模型损失的和,下一句预测任务损失的和,句子对的数量,计数
metric = d2l.Accumulator(4)
num_steps_reached = False
while step < num_steps and not num_steps_reached:
for tokens_X, segments_X, valid_lens_x, pred_positions_X,mlm_weights_X, mlm_Y, nsp_y in train_iter:
# 放到GPU
tokens_X = tokens_X.to(devices[0])
segments_X = segments_X.to(devices[0])
valid_lens_x = valid_lens_x.to(devices[0])
pred_positions_X = pred_positions_X.to(devices[0])
mlm_weights_X = mlm_weights_X.to(devices[0])
mlm_Y, nsp_y = mlm_Y.to(devices[0]), nsp_y.to(devices[0])
trainer.zero_grad()
timer.start()
mlm_l, nsp_l, l = _get_batch_loss_bert(
net, loss, vocab_size, tokens_X, segments_X, valid_lens_x,
pred_positions_X, mlm_weights_X, mlm_Y, nsp_y)
l.backward()
trainer.step()
metric.add(mlm_l, nsp_l, tokens_X.shape[0], 1)
timer.stop()
# animator.add(step + 1, (metric[0] / metric[3], metric[1] / metric[3]))
step += 1
if step == num_steps:
num_steps_reached = True
break
print(f'MLM loss {metric[0] / metric[3]:.3f}, '
f'NSP loss {metric[1] / metric[3]:.3f}')
print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
f'{str(devices)}')
# train_bert(train_iter, net, loss, len(vocab), devices, 20)
def get_bert_encoding(net, tokens_a, tokens_b=None):
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
token_ids = torch.tensor(vocab[tokens], device=devices[0]).unsqueeze(0)
segments = torch.tensor(segments, device=devices[0]).unsqueeze(0)
valid_len = torch.tensor(len(tokens), device=devices[0]).unsqueeze(0)
# print('token_ids', token_ids.device)
# print('segments', segments.device)
# print('valid_len', valid_len.device)
net = net.to(device=devices[0])
encoded_X, _, _ = net(token_ids, segments, valid_len)
# 返回tokens_a和tokens_b中所有词元的BERT(net)表示
return encoded_X
tokens_a = ['a', 'crane', 'is', 'flying']
encoded_text = get_bert_encoding(net, tokens_a)
# 词元:'<cls>','a','crane','is','flying','<sep>'
encoded_text_cls = encoded_text[:, 0, :]
encoded_text_crane = encoded_text[:, 2, :]
"""encoded_text.shape : torch.Size([1, 6, 128])"""
"""encoded_text_cls.shape : torch.Size([1, 128])"""
"""encoded_text_crane[0][:3] : tensor([-0.1122, 0.1724, -1.8077], device='cuda:0', grad_fn=<SliceBackward0>)"""
tokens_a, tokens_b = ['a', 'crane', 'driver', 'came'], ['he', 'just', 'left']
encoded_pair = get_bert_encoding(net, tokens_a, tokens_b)
# 词元:'<cls>','a','crane','driver','came','<sep>','he','just','left','<sep>'
encoded_pair_cls = encoded_pair[:, 0, :]
encoded_pair_crane = encoded_pair[:, 2, :]
"""encoded_pair.shape : torch.Size([1, 10, 128])"""
"""encoded_pair_cls.shape : torch.Size([1, 128])"""
"""encoded_text_crane[0][:3] : tensor([ 0.3801, 0.4826, -1.7688], device='cuda:0', grad_fn=<SliceBackward0>)"""