A. Wonderful Permutation
You are given a permutation p1,p2,…,pnp1,p2,…,pn of length nn and a positive integer k≤nk≤n.
In one operation you can choose two indices ii and jj (1≤i<j≤n1≤i<j≤n) and swap pipi with pjpj.
Find the minimum number of operations needed to make the sum p1+p2+…+pkp1+p2+…+pk as small as possible.
A permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).
InputEach test contains multiple test cases. The first line contains the number of test cases tt (1≤t≤1001≤t≤100). Description of the test cases follows.
The first line of each test case contains two integers nn and kk (1≤k≤n≤1001≤k≤n≤100).
The second line of each test case contains nn integers p1,p2,…,pnp1,p2,…,pn (1≤pi≤n1≤pi≤n). It is guaranteed that the given numbers form a permutation of length nn.
OutputFor each test case print one integer — the minimum number of operations needed to make the sum p1+p2+…+pkp1+p2+…+pk as small as possible.
A
You are given a permutation p1,p2,…,pnp1,p2,…,pn of length nn and a positive integer k≤nk≤n.
In one operation you can choose two indices ii and jj (1≤i<j≤n1≤i<j≤n) and swap pipi with pjpj.
Find the minimum number of operations needed to make the sum p1+p2+…+pkp1+p2+…+pk as small as possible.
A permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).
InputEach test contains multiple test cases. The first line contains the number of test cases tt (1≤t≤1001≤t≤100). Description of the test cases follows.
The first line of each test case contains two integers nn and kk (1≤k≤n≤1001≤k≤n≤100).
The second line of each test case contains nn integers p1,p2,…,pnp1,p2,…,pn (1≤pi≤n1≤pi≤n). It is guaranteed that the given numbers form a permutation of length nn.
OutputFor each test case print one integer — the minimum number of operations needed to make the sum p1+p2+…+pkp1+p2+…+pk as small as possible.
定义第k大的数为下,直接找前k个数中小于x的数即可,我写的倒是有一些麻烦。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
#include<vector>
#include<queue>
#include<cmath>
#include<set>
#include<cmath>
#include<stack>
#include <iomanip>
#include<unordered_map>
using namespace std;
#define int long long
#define ull unsigned long long
#define unmap unordered_map
#define endl '\n'
#define ls (p << 1)
#define rs (p << 1 | 1)
#define s_n (int)s.size()
#define two int a,b,c;cin>>a>>b>>c;add(a,b,c);add(b,a,c);
#define one int a,b,c;cin>>a>>b>>c;add(a,b,c);
const int maxn=2e5+5,mod=1e9+7;
typedef pair<int,int> PII;
int a[110],b[110],n,k;
void solve() {
cin>>n>>k;
for(int i=1;i<=n;i++) {
cin>>a[i];
b[i]=a[i];
}
sort(b+1,b+1+n);
unmap<int,int>mp;
for(int i=1;i<=k;i++) {
mp[b[i]]=1;
}
int ans=0;
for(int i=1;i<=k;i++) {
if(!mp[a[i]]) ans++;
}
cout<<ans<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int ONE_PIECE=1;
cin>>ONE_PIECE;
while(ONE_PIECE--) {
solve();
}
return 0;
}
B. Woeful Permutation
You are given a positive integer nn.
Find any permutation pp of length nn such that the sum lcm(1,p1)+lcm(2,p2)+…+lcm(n,pn)lcm(1,p1)+lcm(2,p2)+…+lcm(n,pn) is as large as possible.
Here lcm(x,y)lcm(x,y) denotes the least common multiple (LCM) of integers xx and yy.
A permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).
InputEach test contains multiple test cases. The first line contains the number of test cases tt (1≤t≤10001≤t≤1000). Description of the test cases follows.
The only line for each test case contains a single integer nn (1≤n≤1051≤n≤105).
It is guaranteed that the sum of nn over all test cases does not exceed 105105.
OutputFor each test case print nn integers p1p1, p2p2, ……, pnpn — the permutation with the maximum possible value of lcm(1,p1)+lcm(2,p2)+…+lcm(n,pn)lcm(1,p1)+lcm(2,p2)+…+lcm(n,pn).
If there are multiple answers, print any of them.
可以发现,只有每一对都是奇数和偶数想乘相加后才会是最大值,因此从小到大奇数和偶数错开排列即可。
注意n为奇数时让1与1相乘才能获得最大值
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
#include<vector>
#include<queue>
#include<cmath>
#include<set>
#include<cmath>
#include<stack>
#include <iomanip>
#include<unordered_map>
using namespace std;
#define int long long
#define ull unsigned long long
#define unmap unordered_map
#define endl '\n'
#define ls (p << 1)
#define rs (p << 1 | 1)
#define s_n (int)s.size()
#define two int a,b,c;cin>>a>>b>>c;add(a,b,c);add(b,a,c);
#define one int a,b,c;cin>>a>>b>>c;add(a,b,c);
const int maxn=2e5+5,mod=1e9+7;
typedef pair<int,int> PII;
int n,a[maxn];
void solve() {
cin>>n;
queue<int>q,p;
for(int i=1;i<=n;i++) {
if(i&1) q.push(i);
else p.push(i);
}
if(n%2==0) {
for(int i=1;i<=n;i++) {
if(i&1) {
int op=p.front();
cout<<op<<' ';
p.pop();
} else {
int op=q.front();
cout<<op<<' ';
q.pop();
}
}
} else {
cout<<1<<' ';
q.pop();
for(int i=2;i<=n;i++) {
if(i&1) {
int op=p.front();
cout<<op<<' ';
p.pop();
} else {
int op=q.front();
cout<<op<<' ';
q.pop();
}
}
}
cout<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int ONE_PIECE=1;
cin>>ONE_PIECE;
while(ONE_PIECE--) {
solve();
}
return 0;
}
C. Sort Zero
You are given an array of nn positive integers a1,a2,…,ana1,a2,…,an.
In one operation you do the following:
- Choose any integer xx.
- For all ii such that ai=xai=x, do ai:=0ai:=0 (assign 00 to aiai).
Find the minimum number of operations required to sort the array in non-decreasing order.
InputEach test contains multiple test cases. The first line contains the number of test cases tt (1≤t≤1041≤t≤104). Description of the test cases follows.
The first line of each test case contains a single integer nn (1≤n≤1051≤n≤105).
The second line of each test case contains nn positive integers a1,a2,…,ana1,a2,…,an (1≤ai≤n1≤ai≤n).
It is guaranteed that the sum of nn over all test cases does not exceed 105105.
OutputFor each test case print one integer — the minimum number of operations required to sort the array in non-decreasing order.
二分答案,找到最靠后的一个数ax使得x到n满足非递减且前边全是0即可。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
#include <cmath>
#include <stack>
#include <iomanip>
#include <unordered_map>
using namespace std;
#define int long long
#define ull unsigned long long
#define unmap unordered_map
#define endl '\n'
#define ls (p << 1)
#define rs (p << 1 | 1)
#define s_n (int)s.size()
const int maxn = 2e5 + 5, mod = 1e9 + 7;
typedef pair<int, int> PII;
int n, a[maxn],b[maxn];
bool check(int x) {
unmap<int,int>mp;
for(int i=1;i<x;i++) mp[a[i]]=1;
int flag = 1;
for(int i=x;i<=n;i++) {
if(mp[a[i]]) b[i]=0;
else b[i]=a[i];
}
for(int i=x;i<n;i++) {
if(b[i]>b[i+1]) return false;
}
return true;
}
void solve()
{
cin>>n;
for(int i=1;i<=n;i++) {
cin>>a[i];
}
int l=1,r=n,k=0;
while(l<=r) {
int mid=(l+r)/2;
if(check(mid)) {
k=mid;
r=mid-1;
}else {
l=mid+1;
}
}
int ans=0;
unmap<int,int>mm;
for(int i=1;i<k;i++) {
if(!mm[a[i]]) {
mm[a[i]]=1;
ans++;
}
}
cout<<ans<<endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int ONE_PIECE = 1;
cin >> ONE_PIECE;
while (ONE_PIECE--)
{
solve();
}
return 0;
}
标签:p2,813,nn,int,Codeforces,permutation,test,Div,include From: https://www.cnblogs.com/cbmango/p/16584676.html