首页 > 其他分享 >yolo5纸张卡片顶点检测,实现任意倾斜角度较正

yolo5纸张卡片顶点检测,实现任意倾斜角度较正

时间:2023-08-23 10:45:52浏览次数:45  
标签:文件 卡片 训练 检测 py 角点 顶点 yolo5

https://blog.csdn.net/demm868/article/details/111087578

向AI转型的程序员都关注了这个号????????????

机器学习AI算法工程   公众号:datayx

因为之前有在做一些规则卡片类的OCR识别任务,就难免会遇到这样的问题:用户上传的照片里卡片的角度是任意的,不规则的,或多或少都会存在不同的倾斜和形变。所以在识别的时候必须要先对其进行矫正再进行检测识别。当时有想到借鉴人脸检测中的关键点回归对卡片的四个角进行回归,但是后来感觉有点麻烦,而且数据有限,如果使用传统的opencv去寻找角点的话实际效果又不太稳定,刚好那段时间v5出来了,突发奇想可以使用v5去做,然后发现效果奇好。

一、数据准备

这里使用银行卡作为示例,其他类型卡片操作一样。首先是使用labelimg对银行卡的四个角度进行标注,将卡片的四个角点当作检测目标,这里需要注意的是,框的标注中心点尽量要对齐角点,因为我们最终要的不是检测框,而是角点的坐标(即检测框的中心点):

标注完后,可以得到voc格式的xml文件,然后就可以用来训练了。

项目代码  获取:

关注微信公众号 datayx  然后回复  yolo  即可获取。

AI项目体验地址 https://loveai.tech

二、v5训练

2.1 准备数据集

首先从github上把yolov5下载下来

https://github.com/ultralytics/yolov5

解压后将以下makeTxt.py和voc_label.py文件拷贝到文件夹中,训练过yolo的同学应该对这两个文件比较熟悉,makeTxt文件是用来划分训练集和测试集,voc_label文件是用来将voc格式转换为coco格式:

makeTxt.py

voc_label.py

然后将刚才标注的数据拷贝到data文件中,格式如下,Annotations存放xml文件,images存放标注图片,然后新建一个point.yaml文件,定义自己的训练数据集,其他的文件可以暂时不用管,按照步骤来后面会自己慢慢产生:

修改模型文件,到mdoels文件夹里,找到yolov5s.yaml,拷贝一份,定义为yolov5s-point.yaml,将里面的nc类别数改为1即可,因为检测任务比较简单,5s模型已经足够了,所以没必要上更大的模型:

OK,配置修改完成。别忘了把官方的模型文件下载下来,放到weights里,用于预训练加载。

三、开始训练

首先对数据集进行划分,同级目录下打开终端,运行makeTxt.py:

训练结束后的权重和训练可视化信息可以在runs文件夹中找到:

四、结果可视化

这里我将runs里面的权重拷贝到外面的weights文件中,将待测试的图片拷贝到inference\images中,运行:

效果还是非常的奈斯。这还只是将角点在原图检测出来,还有后续的操作,需要自己在v5推理后处理那块自己去修改,这里删改的地方太多了,有点乱就不贴上来了。

在后处理阶段,只提取检测框中心点,这才是我们需要的:

得到四个角点的坐标后,就可以用opencv做一个透视变换,得到新纠正后方方正正的图,识别起来就very easy了:

透视变换核心代码如下:

五、可能会遇到的问题

以上效果都是经过调优后得到的结果,实际串联部署起来有很好的鲁棒性,使用过程中有比较多的优化步骤因为文章篇幅的原因没有全部写出来,这里列出一些实际使用中可能还会存在的问题,需要自己去解决:

  1. 检测框的置信度不高;

  2. 误检问题,即如果检测出来4个点以上;漏检问题,检测出来低于4个点;

  3. 图片大角度(0,90,180,270)分类问题,可以再训练一个很小的分类网络做辅助;

  4. 如果训练的图片卡片角点也是方方正正的,对形变的卡片检测效果并不太好,需要考虑使用更多的数据增强;

  5. 其他训练tricks调优。

一些后话:该方法对角点明显的数据纠正效果比较好,也比较通用,当然在服务器资源足够的情况下可以考虑,如果在资源缺乏的设备中,使用v5去做就有点奢侈,可以尝试其他更小的模型去做,如果自己的数据场景没有这么复杂也可以使用传统的opencv的方法去将四个角点找出再做变换,可以很大程度上节省资源,不过稳定性可能会差一些。这个方法思想比较简单,主要还是突发奇想,对yolov5的一个扩展应用,如果有更好的纠正方式可以评论分享,相互学习。

标签:文件,卡片,训练,检测,py,角点,顶点,yolo5
From: https://www.cnblogs.com/xiondun/p/17650566.html

相关文章

  • Prim算法是一种用于解决最小生成树问题的贪心算法。它通过逐步选择边来构建最小生成树
    importjava.util.*;classPrimAlgorithm{privatestaticfinalintINF=Integer.MAX_VALUE;publicvoidprimMST(int[][]graph){intvertices=graph.length;int[]parent=newint[vertices];//用于存储最小生成树的父节点int......
  • 【HarmonyOS】服务卡片 API6 JSUI跳转不同页面
    ​【引言】“JS卡片支持为组件设置action,包括router事件和message事件,其中router事件用于应用跳。若设置router事件,则action属性值为"router";abilityName为卡片提供方应用的跳转目标Ability名;params中的值按需填写,其值在使用时通过intent.getStringParam("params")获取即可;”这一......
  • 鸿蒙万能卡片开发详解-记忆翻牌游戏
    (目录)1.前言      翻牌游戏万能卡片,随机生成16张共包含8张完全不同的图像,游戏的目标是在有限30秒时间内,将16张卡片中包含相同的图像的卡片两两配对。匹配的规则是连续点击两张卡片,若卡背面的图像相同,则匹配成功,若不同则配对失败。游戏主要考察玩家的记忆力,因为游戏还规定......
  • 微信小程序:横向滚动卡片列表模板
    1前言在开发微信小程序时,横向可滚动卡片列表是一个必不可缺的页面组件。其不仅美观还可以节省屏幕空间。具体截图如下:2代码详解主要用的是scroll-x,具体代码如下:wxml<scroll-viewscroll-xclass="scroll-x"><viewstyle="display:inline-block;"class="act"bindtap=......
  • 三维模型OSGB格式轻量化顶点压缩主要技术方法分析
    三维模型OSGB格式轻量化顶点压缩主要技术方法分析在三维模型应用中,轻量化处理是提高数据传输效率、减少渲染时间和优化用户体验的重要手段。而OSGB格式是一种常见的三维模型格式,在进行轻量化处理时,顶点压缩是一种常用的技术方法。本文将分析OSGB格式顶点压缩的主要技术方法。1......
  • 微信小程序:横向滚动卡片列表模板
    文章目录1前言2代码详解3样例展示4结语1前言在开发微信小程序时,横向可滚动卡片列表是一个必不可缺的页面组件。其不仅美观还可以节省屏幕空间。具体截图如下:2代码详解主要用的是scroll-x,具体代码如下:wxml<scroll-viewscroll-xclass="scroll-x"><viewstyle="display:......
  • 2023河南萌新联赛第(四)场:河南大学 C.卡片翻转
    传送门大致思路:1.发现一个很神奇的性质,无论是操作几的翻转,在同一行的始终在同一行,在同一列的始终在同一列。2.对于没有操作2的时候,我们只需要分开维护x轴和y轴哪两段区间翻转了即可,翻转用平衡树来写,这里选择的splay平衡树。3.对于有操作2的时候我们会发下进行两次操作2是会......
  • 【星球知识卡片】视频分类与行为识别有哪些核心技术,对其进行长期深入学习...
    大家好,欢迎来到我们的星球知识小卡片专栏,本期给大家分享视频分类的核心技术点。作者&编辑|言有三13D卷积视频相对于图像多出了一个维度,而3D卷积正好可以用于处理这个维度,因此也非常适合视频分类任务,不过缺点是计算量比较大,下图展示了一个简单的3D模型。2RNN与LSTM视频和语音......
  • 【星球知识卡片】模型蒸馏的核心技术点有哪些,如何对其进行长期深入学习...
    大家好,欢迎来到我们的星球知识小卡片专栏,本期给大家分享模型蒸馏的核心技术点。作者&编辑|言有三1什么是模型蒸馏一般地,大模型往往是单个复杂网络或者是若干网络的集合,拥有良好的性能和泛化能力,而小模型因为网络规模较小,表达能力有限。利用大模型学习到的知识去指导小模型训练,......
  • 【星球知识卡片】模型量化的核心技术点有哪些,如何对其进行长期深入学习...
    大家好,欢迎来到我们的星球知识小卡片专栏,本期给大家分享模型量化的核心技术点。作者&编辑|言有三1二值(1bit)量化二值量化是最高效率的量化方式,也可以称之为1bit量化,即将32位浮点数量化为1bit整型,非常适合FPGA等平台进行并行运算。二值量化模型以BinaryConnect和BinarizedNeu......