首页 > 其他分享 >WMCTF2023 ezAndroid

WMCTF2023 ezAndroid

时间:2023-08-21 14:55:39浏览次数:42  
标签:WMCTF2023 return 16 int uint8 ++ state ezAndroid

一道安卓逆向题,用jadx打开。
定位主要逻辑:

点击查看代码
    public void CheckOutClick(View view) {
        String username = this.usernameInput.getText().toString();
        String password = this.passwordInput.getText().toString();
        if (username.equals("") || password.equals("")) {
            messageBox("username or password is empty!");
        } else if (CheckUsername(username) != 1) {
            messageBox("failed login");
        } else {
            f166x = username + "123456";
            if (check2(password) != 1) {
                messageBox("failed login");
                return;
            }
            String flag = "WMCTF{" + username + password + "}";
            messageBox(flag);
        }
    }


没有发现CheckUsername和check2函数的具体实现,然后看到上面有
点击查看代码
    static {
        System.loadLibrary("ezandroid");
    }

可知这两个函数是在这个so文件里实现的,将apk改后缀名为zip,解压后在lib目录的x64的目录下找到so文件,用ida反编译。可以看到加了ollvm。但不影响大致逻辑。然后浏览函数列表,发现memcmp函数,交叉引用跳过去,发现只有一处调用,猜测可能是与密文比较,然后看到比较上面有一个函数,点进去看
点击查看代码
unsigned __int64 __fastcall rc4(__int64 a1, __int64 a2, int a3, __int64 a4, int a5)
{
  int v5; // edx
  int v6; // edx
  int v7; // esi
  int i; // [rsp+10h] [rbp-250h]
  int v10; // [rsp+14h] [rbp-24Ch]
  int v11; // [rsp+18h] [rbp-248h]
  int v16; // [rsp+48h] [rbp-218h]
  char v17[520]; // [rsp+50h] [rbp-210h] BYREF
  unsigned __int64 v18; // [rsp+258h] [rbp-8h]

  v18 = __readfsqword(0x28u);
  v11 = 0;
  v10 = 0;
  v16 = 0;
  for ( i = -1585902732; ; i = v7 )
  {
    while ( 1 )
    {
      while ( 1 )
      {
        while ( i < 283599289 )
        {
          if ( i < -1585902732 )
          {
            if ( i < -2034379086 )
            {
              ++v10;
              i = 622976386;
            }
            else if ( i < -1811513745 )
            {
              ++v16;
              i = -1585902732;
            }
            else
            {
              v17[v16 + 256] = v16;
              v17[v16] = *(_BYTE *)(a4 + v16 % a5);
              i = -2034379086;
            }
          }
          else if ( i < -338555951 )
          {
            v5 = 1218004640;
            if ( v16 < 256 )
              v5 = -1811513745;
            i = v5;
          }
          else if ( i < 109075120 )
          {
            v6 = 1759236594;
            if ( v16 < 256 )
              v6 = 283599289;
            i = v6;
          }
          else
          {
            ++v16;
            i = -338555951;
          }
        }
        if ( i < 1218004640 )
          break;
        if ( i < 1333836938 )
        {
          v16 = 0;
          i = -338555951;
        }
        else if ( i < 1759236594 )
        {
          v16 = (v16 + 1) % 256;
          v11 = ((unsigned __int8)v17[v16 + 256] + v11) % 256;
          init(&v17[v16 + 256], &v17[v11 + 256]);
          *(_BYTE *)(a2 + v10) = v10 ^ v17[((unsigned __int8)v17[v11 + 256] + (unsigned __int8)v17[v16 + 256]) % 256
                                         + 256] ^ *(_BYTE *)(a1 + v10);//这里多异或了一个v10,即index
          i = -2134342414;
        }
        else
        {
          v11 = 0;
          v16 = 0;
          v10 = 0;
          i = 622976386;
        }
      }
      if ( i >= 622976386 )
        break;
      v11 = ((unsigned __int8)v17[v16] + (unsigned __int8)v17[v16 + 256] + v11) % 256;
      init(&v17[v16 + 256], &v17[v11 + 256]);
      i = 109075120;
    }
    if ( i >= 1109868132 )
      break;
    v7 = 1109868132;
    if ( v10 < a3 )
      v7 = 1333836938;
  }
  return __readfsqword(0x28u);
}
明显rc4加密,这里的函数名手动重命名了一下。然后动态调试so文件,具体可以看https://www.cnblogs.com/Only-xiaoxiao/p/17216465.html这位师傅的文章。 在rc4函数下断点,运行起来以后,usernname和password都输入10个字符,发现成功断在了这里。由此可以确定这个函数是某一个check函数,动调获得rc4密钥。去网上找个脚本解密即可,需要注意的是,这里的rc4在最后每一位多异或了index。所以解题代码如下
点击查看代码
import base64
def rc4_main(key = "init_key", message = "init_message"):
    print("RC4解密主函数调用成功")
    print('\n')
    s_box = rc4_init_sbox(key)
    crypt = rc4_excrypt(message, s_box)
    return crypt
def rc4_init_sbox(key):
    s_box = list(range(256))
    print("原来的 s 盒:%s" % s_box)
    print('\n')
    j = 0
    for i in range(256):
        j = (j + s_box[i] + ord(key[i % len(key)])) % 256
        s_box[i], s_box[j] = s_box[j], s_box[i]
    print("混乱后的 s 盒:%s"% s_box)
    print('\n')

    print(len(s_box))
    return s_box
def rc4_excrypt(plain, box):
    print("调用解密程序成功。")
    print('\n')
    plain = base64.b64decode(plain.encode('utf-8'))
    plain = bytes.decode(plain)
    res = []
    i = j = 0
    for s in plain:
        i = (i + 1) % 256
        j = (j + box[i]) % 256
        box[i], box[j] = box[j], box[i]
        t = (box[i] + box[j]) % 256
        k =(i-1)^ box[t]
        res.append(chr(ord(s) ^ k))
    print("res用于解密字符串,解密后是:%res" %res)
    print('\n')
    cipher = "".join(res)
    print("解密后的字符串是:%s" %cipher)
    print('\n')
    print("解密后的输出(没经过任何编码):")
    print('\n')
    return cipher
a=[0xE9, 0x97, 0x64, 0xE6, 0x7E, 0xEB, 0xBD, 0xC1, 0xAB, 0x43] #cipher
key="12345678"
s=""
for i in a:
    s+=chr(i)
s=str(base64.b64encode(s.encode('utf-8')), 'utf-8')
rc4_main(key, s)
#解密后的字符串是:Re_1s_eaSy
这里就得到了flag的一部分,然后对这个函数交叉引用到了JNI_OnLoad,随便点几个函数看看,发现
点击查看代码
  do
  {
    while ( 1 )
    {
      while ( 1 )
      {
        while ( 1 )
        {
          v7 = *v8;
          if ( v7 >= 943591838 )
            break;
          if ( v7 < 877919414 )
          {
            if ( v7 == -2001143219 )
            {
              v3 = v30 - 435186781;
              if ( v31 != 16 )  #输入长度
                v3 = v30 - 451658405;
              *v8 = v3;
            }
          }
          else if ( v7 < 894391038 )
          {
            if ( v7 == 877919414 )
            {
              v22 = 0;
              *v8 = v30 + 550581173;
            }
          }
          else if ( v7 == 894391038 )
          {
            AES((__int64)v14, 16, v15);//这里函数和变量经过重命名
            v4 = v30 - 385985981;
            if ( _mm_movemask_epi8(_mm_cmpeq_epi8(*(__m128i *)enc, *v14)) == 0xFFFF )
              v4 = v30 - 385360373;
            *v8 = v4;
          }
        }
发现有cmp,使用findcrypto识别出AES算法,动调可知换了sbox。网上找个aes解密代码改改
点击查看代码
#include <stdint.h>
#include <stdio.h>
#include <string.h>

typedef struct{
    uint32_t eK[44], dK[44];    // encKey, decKey
    int Nr; // 10 rounds
}AesKey;

#define BLOCKSIZE 16  //AES-128分组长度为16字节

// uint8_t y[4] -> uint32_t x
#define LOAD32H(x, y) \
  do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
             ((uint32_t)((y)[2] & 0xff)<<8)  | ((uint32_t)((y)[3] & 0xff));} while(0)

// uint32_t x -> uint8_t y[4]
#define STORE32H(x, y) \
  do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff);   \
       (y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)

// 从uint32_t x中提取从低位开始的第n个字节
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)

/* used for keyExpansion */
// 字节替换然后循环左移1位
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
                ((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))

// uint32_t x循环左移n位
#define ROF32(x, n)  (((x) << (n)) | ((x) >> (32-(n))))
// uint32_t x循环右移n位
#define ROR32(x, n)  (((x) >> (n)) | ((x) << (32-(n))))

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
// AES-128轮常量
static const uint32_t rcon[10] = {
        0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
        0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
// S盒
unsigned char S[256] = {
         0x29, 0x40, 0x57, 0x6E, 0x85, 0x9C, 0xB3, 0xCA, 0xE1, 0xF8, 
  0x0F, 0x26, 0x3D, 0x54, 0x6B, 0x82, 0x99, 0xB0, 0xC7, 0xDE, 
  0xF5, 0x0C, 0x23, 0x3A, 0x51, 0x68, 0x7F, 0x96, 0xAD, 0xC4, 
  0xDB, 0xF2, 0x09, 0x20, 0x37, 0x4E, 0x65, 0x7C, 0x93, 0xAA, 
  0xC1, 0xD8, 0xEF, 0x06, 0x1D, 0x34, 0x4B, 0x62, 0x79, 0x90, 
  0xA7, 0xBE, 0xD5, 0xEC, 0x03, 0x1A, 0x31, 0x48, 0x5F, 0x76, 
  0x8D, 0xA4, 0xBB, 0xD2, 0xE9, 0x00, 0x17, 0x2E, 0x45, 0x5C, 
  0x73, 0x8A, 0xA1, 0xB8, 0xCF, 0xE6, 0xFD, 0x14, 0x2B, 0x42, 
  0x59, 0x70, 0x87, 0x9E, 0xB5, 0xCC, 0xE3, 0xFA, 0x11, 0x28, 
  0x3F, 0x56, 0x6D, 0x84, 0x9B, 0xB2, 0xC9, 0xE0, 0xF7, 0x0E, 
  0x25, 0x3C, 0x53, 0x6A, 0x81, 0x98, 0xAF, 0xC6, 0xDD, 0xF4, 
  0x0B, 0x22, 0x39, 0x50, 0x67, 0x7E, 0x95, 0xAC, 0xC3, 0xDA, 
  0xF1, 0x08, 0x1F, 0x36, 0x4D, 0x64, 0x7B, 0x92, 0xA9, 0xC0, 
  0xD7, 0xEE, 0x05, 0x1C, 0x33, 0x4A, 0x61, 0x78, 0x8F, 0xA6, 
  0xBD, 0xD4, 0xEB, 0x02, 0x19, 0x30, 0x47, 0x5E, 0x75, 0x8C, 
  0xA3, 0xBA, 0xD1, 0xE8, 0xFF, 0x16, 0x2D, 0x44, 0x5B, 0x72, 
  0x89, 0xA0, 0xB7, 0xCE, 0xE5, 0xFC, 0x13, 0x2A, 0x41, 0x58, 
  0x6F, 0x86, 0x9D, 0xB4, 0xCB, 0xE2, 0xF9, 0x10, 0x27, 0x3E, 
  0x55, 0x6C, 0x83, 0x9A, 0xB1, 0xC8, 0xDF, 0xF6, 0x0D, 0x24, 
  0x3B, 0x52, 0x69, 0x80, 0x97, 0xAE, 0xC5, 0xDC, 0xF3, 0x0A, 
  0x21, 0x38, 0x4F, 0x66, 0x7D, 0x94, 0xAB, 0xC2, 0xD9, 0xF0, 
  0x07, 0x1E, 0x35, 0x4C, 0x63, 0x7A, 0x91, 0xA8, 0xBF, 0xD6, 
  0xED, 0x04, 0x1B, 0x32, 0x49, 0x60, 0x77, 0x8E, 0xA5, 0xBC, 
  0xD3, 0xEA, 0x01, 0x18, 0x2F, 0x46, 0x5D, 0x74, 0x8B, 0xA2, 
  0xB9, 0xD0, 0xE7, 0xFE, 0x15, 0x2C, 0x43, 0x5A, 0x71, 0x88, 
  0x9F, 0xB6, 0xCD, 0xE4, 0xFB, 0x12
};

//逆S盒
unsigned char inv_S[256] = {99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22};

/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t (*state)[4], const uint8_t *in) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[j][i] = *in++;
        }
    }
    return 0;
}

/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t (*state)[4], uint8_t *out) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            *out++ = state[j][i];
        }
    }
    return 0;
}
//秘钥扩展
int keyExpansion(const uint8_t *key, uint32_t keyLen, AesKey *aesKey) {

    if (NULL == key || NULL == aesKey){
        printf("keyExpansion param is NULL\n");
        return -1;
    }

    if (keyLen != 16){
        printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
        return -1;
    }

    uint32_t *w = aesKey->eK;  //加密秘钥
    uint32_t *v = aesKey->dK;  //解密秘钥

    /* keyLen is 16 Bytes, generate uint32_t W[44]. */

    /* W[0-3] */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(w[i], key + 4*i);
    }

    /* W[4-43] */
    for (int i = 0; i < 10; ++i) {
        w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
        w[5] = w[1] ^ w[4];
        w[6] = w[2] ^ w[5];
        w[7] = w[3] ^ w[6];
        w += 4;
    }

    w = aesKey->eK+44 - 4;
    //解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥
    //即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3]
    for (int j = 0; j < 11; ++j) {

        for (int i = 0; i < 4; ++i) {
            v[i] = w[i];
        }
        w -= 4;
        v += 4;
    }

    return 0;
}

// 轮秘钥加
int addRoundKey(uint8_t (*state)[4], const uint32_t *key) {
    uint8_t k[4][4];

    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            k[i][j] = (uint8_t) BYTE(key[j], 3 - i);  /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */
            state[i][j] ^= k[i][j];
        }
    }

    return 0;
}

//字节替换
int subBytes(uint8_t (*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标
        }
    }

    return 0;
}

//逆字节替换
int invSubBytes(uint8_t (*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = inv_S[state[i][j]];
        }
    }
    return 0;
}

//行移位
int shiftRows(uint8_t (*state)[4]) {
    uint32_t block[4] = {0};

    /* i: row */
    for (int i = 0; i < 4; ++i) {
    //便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t
        LOAD32H(block[i], state[i]);
        block[i] = ROF32(block[i], 8*i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

//逆行移位
int invShiftRows(uint8_t (*state)[4]) {
    uint32_t block[4] = {0};

    /* i: row */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(block[i], state[i]);
        block[i] = ROR32(block[i], 8*i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

/* Galois Field (256) Multiplication of two Bytes */
// 两字节的伽罗华域乘法运算
uint8_t GMul(uint8_t u, uint8_t v) {
    uint8_t p = 0;

    for (int i = 0; i < 8; ++i) {
        if (u & 0x01) {    //
            p ^= v;
        }

        int flag = (v & 0x80);
        v <<= 1;
        if (flag) {
            v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
        }

        u >>= 1;
    }

    return p;
}

// 列混合
int mixColumns(uint8_t (*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = {{0x02, 0x03, 0x01, 0x01},
                       {0x01, 0x02, 0x03, 0x01},
                       {0x01, 0x01, 0x02, 0x03},
                       {0x03, 0x01, 0x01, 0x02}};

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j){
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {  //伽罗华域加法和乘法
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                        ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

// 逆列混合
int invMixColumns(uint8_t (*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = {{0x0E, 0x0B, 0x0D, 0x09},
                       {0x09, 0x0E, 0x0B, 0x0D},
                       {0x0D, 0x09, 0x0E, 0x0B},
                       {0x0B, 0x0D, 0x09, 0x0E}};  //使用列混合矩阵的逆矩阵

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j){
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                          ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

// AES-128加密接口,输入key应为16字节长度,输入长度应该是16字节整倍数,
// 这样输出长度与输入长度相同,函数调用外部为输出数据分配内存
int aesEncrypt(const uint8_t *key, uint32_t keyLen, const uint8_t *pt, uint8_t *ct, uint32_t len) {

    AesKey aesKey;
    uint8_t *pos = ct;
    const uint32_t *rk = aesKey.eK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = {0};
    uint8_t actualKey[16] = {0};
    uint8_t state[4][4] = {0};

    if (NULL == key || NULL == pt || NULL == ct){
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16){
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE){
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  // 秘钥扩展

	// 使用ECB模式循环加密多个分组长度的数据
    for (int i = 0; i < len; i += BLOCKSIZE) {
		// 把16字节的明文转换为4x4状态矩阵来进行处理
        loadStateArray(state, pt);
        // 轮秘钥加
        addRoundKey(state, rk);

        for (int j = 1; j < 10; ++j) {
            rk += 4;
            subBytes(state);   // 字节替换
            shiftRows(state);  // 行移位
            mixColumns(state); // 列混合
            addRoundKey(state, rk); // 轮秘钥加
        }

        subBytes(state);    // 字节替换
        shiftRows(state);  // 行移位
        // 此处不进行列混合
        addRoundKey(state, rk+4); // 轮秘钥加
		
		// 把4x4状态矩阵转换为uint8_t一维数组输出保存
        storeStateArray(state, pos);

        pos += BLOCKSIZE;  // 加密数据内存指针移动到下一个分组
        pt += BLOCKSIZE;   // 明文数据指针移动到下一个分组
        rk = aesKey.eK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}

// AES128解密, 参数要求同加密
int aesDecrypt(const uint8_t *key, uint32_t keyLen, const uint8_t *ct, uint8_t *pt, uint32_t len) {
    AesKey aesKey;
    uint8_t *pos = pt;
    const uint32_t *rk = aesKey.dK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = {0};
    uint8_t actualKey[16] = {0};
    uint8_t state[4][4] = {0};

    if (NULL == key || NULL == ct || NULL == pt){
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16){
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE){
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  //秘钥扩展,同加密

    for (int i = 0; i < len; i += BLOCKSIZE) {
        // 把16字节的密文转换为4x4状态矩阵来进行处理
        loadStateArray(state, ct);
        // 轮秘钥加,同加密
        addRoundKey(state, rk);

        for (int j = 1; j < 10; ++j) {
            rk += 4;
            invShiftRows(state);    // 逆行移位
            invSubBytes(state);     // 逆字节替换,这两步顺序可以颠倒
            addRoundKey(state, rk); // 轮秘钥加,同加密
            invMixColumns(state);   // 逆列混合
        }

        invSubBytes(state);   // 逆字节替换
        invShiftRows(state);  // 逆行移位
        // 此处没有逆列混合
        addRoundKey(state, rk+4);  // 轮秘钥加,同加密

        storeStateArray(state, pos);  // 保存明文数据
        pos += BLOCKSIZE;  // 输出数据内存指针移位分组长度
        ct += BLOCKSIZE;   // 输入数据内存指针移位分组长度
        rk = aesKey.dK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}
void printStr(uint8_t *ptr, int len, char *tag) {
    printf("%s\ndata[%d]: ", tag, len);
    for (int i = 0; i < len; ++i) {
        printf("%c", *ptr++);
    }
    printf("\n");
}

int main() {
    const uint8_t key[16] = {82, 101, 95, 49, 115, 95, 101, 97, 83, 121, 49, 50, 51, 52, 53, 54};
    const uint8_t pt[16]={ 0x2B, 0xC8, 0x20, 0x8B, 0x5C, 0x0D, 0xA7, 0x9B, 0x2A, 0x51, 0x3A, 0xD2, 0x71, 0x71, 0xCA, 0x50};
    uint8_t plain[16] = {0};  // 外部申请输出数据内存,用于解密后的数据
    aesDecrypt(key, 16, pt, plain, 16);       // 解密
    printStr(plain, 16, "after decryption:"); // 打印解密后的明文数据
    return 0;
}//_eZ_Rc4_@nd_AES!
得到完整flag为WMCTF{Re_1s_eaSy_eZ_Rc4_@nd_AES!}

标签:WMCTF2023,return,16,int,uint8,++,state,ezAndroid
From: https://www.cnblogs.com/r136a1/p/17646018.html

相关文章