了解机器学习概念之后,无涯教程现在可以将重点转移到深度学习概念上,深度学习是机器学习的一个分支,被认为是近几十年来研究人员迈出的关键一步。深度学习实现的示例包括图像识别和语音识别等应用。
以下是深度神经网络的两种重要类型-
- 卷积神经网络
- 递归神经网络
在本章中,将重点介绍CNN,即卷积神经网络。
卷积神经网络
卷积神经网络旨在通过多层数组处理数据,这种类型的神经网络用于图像识别或面部识别等应用中, CNN与任何其他普通神经网络之间的主要区别在于,CNN将输入作为二维数组,直接在图像上进行操作,而不是像其他神经网络关注的是特征提取。
CNN利用输入数据中存在的空间相关性,神经网络的每个并发层都连接一些输入神经元,该特定区域称为局部感受野,局部感受野集中在隐藏的神经元上,隐藏的神经元在提到的字段内处理输入数据,但未实现特定边界之外的更改。
如果观察到以上表示,则每个连接都将学习隐藏神经元的权重,并具有从一层到另一层的运动的关联连接,在这里,单个神经元会执行转换,这个过程称为"卷积"。
从输入层到隐藏要素图的连接映射定义为"共享权重",其中包含的偏差称为"共享偏差"。
CNN或卷积神经网络使用池化层,池化层是在CNN声明后立即定位的层,它将来自用户的输入作为来自卷积网络的特征图,并准备一个压缩的特征图。合并层有助于创建具有先前层神经元的层。
CNN代码实现
在本部分中,无涯教程将了解CNN的TensorFlow实现。需要执行整个网络并具有适当尺寸的步骤如下所示-
步骤1 - 包括计算CNN模型所需的TensorFlow必要模块和数据集模块。
import tensorflow as tf import numpy as np from tensorflow.examples.Learnfk.mnist import input_data
步骤2 - 声明一个名为 run_cnn()的函数,该函数包含各种参数和带有数据占位符声明的优化变量,这些优化变量将声明训练模式。
def run_cnn(): mnist=input_data.read_data_sets("MNIST_data/", one_hot=True) learning_rate=0.0001 epochs=10 batch_size=50
步骤3 - 在这一步中,将使用输入参数- 28 x 28= 784像素声明训练数据占位符,这是从 mnist.train提取的扁平化图像数据。
可以根据需要重塑张量,第一个值(-1)告诉函数根据传递给它的数据量动态调整该维度,中间的两个尺寸设置为图像尺寸(即28 x 28)。
x=tf.placeholder(tf.float32, [None, 784]) x_shaped=tf.reshape(x, [-1, 28, 28, 1]) y=tf.placeholder(tf.float32, [None, 10])
步骤4 - 现在,重要的是创建一些卷积层-
layer1=create_new_conv_layer(x_shaped, 1, 32, [5, 5], [2, 2], name='layer1') layer2=create_new_conv_layer(layer1, 32, 64, [5, 5], [2, 2], name='layer2')
步骤5 - 让无涯教程输出,在将步长2的两层合并为28 x 28的尺寸之后,将其放宽为14 x 14或最小7 x 7 的x ,y坐标,但具有64个输出通道。要创建完全连接的密集层,新形状需要为[-1,7 x 7 x 64],可以为此层设置一些权重和偏差值,然后使用ReLU激活。
flattened = tf.reshape(layer2, [-1, 7 * 7 * 64]) wd1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1000], stddev = 0.03), name = 'wd1') bd1 = tf.Variable(tf.truncated_normal([1000], stddev = 0.01), name = 'bd1') dense_layer1 = tf.matmul(flattened, wd1) + bd1 dense_layer1 = tf.nn.relu(dense_layer1)
步骤6 - 另一层具有特定softmax激活并带有所需优化器的层定义了准确性判断,从而进行了初始化运算符的设置。
wd2 = tf.Variable(tf.truncated_normal([1000, 10], stddev = 0.03), name = 'wd2') bd2 = tf.Variable(tf.truncated_normal([10], stddev = 0.01), name = 'bd2') dense_layer2 = tf.matmul(dense_layer1, wd2) + bd2 y_ = tf.nn.softmax(dense_layer2) cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits = dense_layer2, labels = y)) optimiser = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) init_op = tf.global_variables_initializer()
步骤7 - 应该设置记录变量,这将汇总汇总以存储数据的准确性。
tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() writer = tf.summary.FileWriter('E:\TensorFlowProject') with tf.Session() as sess: sess.run(init_op) total_batch = int(len(mnist.train.labels)/batch_size) for epoch in range(epochs): avg_cost = 0 for i in range(total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size = batch_size) _, c = sess.run([optimiser, cross_entropy], feed_dict = { x:batch_x, y: batch_y}) avg_cost += c/total_batch test_acc = sess.run(accuracy, feed_dict = {x: mnist.test.images, y: mnist.test.labels}) summary = sess.run(merged, feed_dict = {x: mnist.test.images, y: mnist.test.labels}) writer.add_summary(summary, epoch) print("\nTraining complete!") writer.add_graph(sess.graph) print(sess.run(accuracy, feed_dict = {x: mnist.test.images, y: mnist.test.labels})) def create_new_conv_layer( input_data, num_input_channels, num_filters,filter_shape, pool_shape, name): conv_filt_shape = [ filter_shape[0], filter_shape[1], num_input_channels, num_filters] weights = tf.Variable( tf.truncated_normal(conv_filt_shape, stddev = 0.03), name = name+'_W') bias = tf.Variable(tf.truncated_normal([num_filters]), name = name+'_b') #Out layer defines the output out_layer = tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding = 'SAME') out_layer += bias out_layer = tf.nn.relu(out_layer) ksize = [1, pool_shape[0], pool_shape[1], 1] strides = [1, 2, 2, 1] out_layer = tf.nn.max_pool( out_layer, ksize = ksize, strides = strides, padding = 'SAME') return out_layer if __name__ == "__main__": run_cnn()
以下是上述代码生成的输出-
See @{tf.nn.softmax_cross_entropy_with_logits_v2}. 2018-09-19 17:22:58.802268: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 2018-09-19 17:25:41.522845: W T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation of 1003520000 exceeds 10% of system memory. 2018-09-19 17:25:44.630941: W T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation of 501760000 exceeds 10% of system memory. Epoch: 1 cost=0.676 test accuracy: 0.940 2018-09-19 17:26:51.987554: W T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation of 1003520000 exceeds 10% of system memory.
参考链接
https://www.learnfk.com/tensorflow/tensorflow-convolutional-neural-networks.html
标签:layer,name,卷积,无涯,batch,tensorflow,tf,TensorFlow,mnist From: https://blog.51cto.com/u_14033984/7151091