首页 > 其他分享 >E. Maximum Monogonosity

E. Maximum Monogonosity

时间:2023-08-14 20:36:07浏览次数:70  
标签:le max Monogonosity Maximum leq right test left

E. Maximum Monogonosity

You are given an array $a$ of length $n$ and an array $b$ of length $n$. The cost of a segment $[l, r]$, $1 \le l \le r \le n$, is defined as $|b_l - a_r| + |b_r - a_l|$.

Recall that two segments $[l_1, r_1]$, $1 \le l_1 \le r_1 \le n$, and $[l_2, r_2]$, $1 \le l_2 \le r_2 \le n$, are non-intersecting if one of the following conditions is satisfied: $r_1 < l_2$ or $r_2 < l_1$.

The length of a segment $[l, r]$, $1 \le l \le r \le n$, is defined as $r - l + 1$.

Find the maximum possible sum of costs of non-intersecting segments $[l_j, r_j]$, $1 \le l_j \le r_j \le n$, whose total length is equal to $k$.

Input

Each test consists of multiple test cases. The first line contains a single integer $t$ $(1 \le t \le 1000)$ — the number of sets of input data. The description of the test cases follows.

The first line of each test case contains two integers $n$ and $k$ ($1 \le k \le n \le 3000$) — the length of array $a$ and the total length of segments.

The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-10^9 \le a_i \le 10^9$) — the elements of array $a$.

The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($-10^9 \le b_i \le 10^9$) — the elements of array $b$.

It is guaranteed that the sum of $n$ over all test case does not exceed $3000$.

Output

For each test case, output a single number — the maximum possible sum of costs of such segments.

Example

input

5
4 4
1 1 1 1
1 1 1 1
3 2
1 3 2
5 2 3
5 1
1 2 3 4 5
1 2 3 4 5
7 2
1 3 7 6 4 7 2
1 5 3 2 7 4 5
4 2
17 3 5 8
16 2 5 9

output

0
10
0
16
28

Note

In the first test case, the cost of any segment is $0$, so the total cost is $0$.

In the second test case, we can take the segment $[1, 1]$ with a cost of $8$ and the segment $[3, 3]$ with a cost of $2$ to get a total sum of $10$. It can be shown that this is the optimal solution.

In the third test case, we are only interested in segments of length $1$, and the cost of any such segment is $0$.

In the fourth test case, it can be shown that the optimal sum is $16$. For example, we can take the segments $[3, 3]$ and $[4, 4]$.

 

解题思路

  最直接的dp做法还是很容易想到的,定义状态$f(i,j)$表示从前$i$个数中选出了总长度为$j$且互不相交的区间的所有方案中的最大值。根据以第$i$个数为右端点的区间长度进行状态划分,因此状态转移方程就是$$f(i,j) = \max\left\{ {f(i-1,j), \ \max_{1 \leq u \leq \min \left\{ {j,k} \right\}}\left\{ {f(i-u, j-u) + \left| {a_i-b_{i-u+1}} \right| + \left| {a_{i-u+1}-b_{i}} \right|} \right\}} \right\} \quad (j \leq i)$$

  可以发现整个dp的时间复杂度是$O(n \cdot k^2)$,因此需要对状态表示或状态转移进行优化。当时想着推状态转移的式子然后找规律再结合数据结构来优化,结果发现好像不行,至少我没有做出来。然后看题解发现是对状态转移方程进行改写然后再优化,这个我肯定是想不到了。

  对于$\left| a_l - b_r \right| + \left| a_r - b_l \right|$,其实是等价于$$\left| a_l - b_r \right| + \left| a_r - b_l \right| = \max\left\{ {b_l - a_r + b_r - a_l, \, b_l - a_r - b_r + a_l, \, -b_l + a_r + b_r - a_l, \, -b_l + a_r - b_r + a_l} \right\}$$

  即我们只需对这$4$中组合求最大值即可,因此状态转移方程可以改写成如下形式:$$\begin{align*} f(i,j) &= \max\left\{ {f(i-1,j), \ \max_{1 \leq u \leq \min \left\{ {j,k} \right\}}\left\{ {f(i-u, j-u) + \left| {a_i-b_{i-u+1}} \right| + \left| {a_{i-u+1}-b_{i}} \right|} \right\}} \right\} \\\\ &= \max\Big\{ f(i-1,j), \\ & \qquad\quad \max_{1 \leq u \leq \min \left\{ {j,k} \right\}}\left\{ {f(i-u, j-u) - a_{i-u+1} + b_{i-u+1}} \right\} - a_i + b_i, \\ & \qquad\quad \max_{1 \leq u \leq \min \left\{ {j,k} \right\}}\left\{ {f(i-u, j-u) + a_{i-u+1} + b_{i-u+1}} \right\} - a_i - b_i, \\ & \qquad\quad \max_{1 \leq u \leq \min \left\{ {j,k} \right\}}\left\{ {f(i-u, j-u) - a_{i-u+1} - b_{i-u+1}} \right\} + a_i + b_i, \\ & \qquad\quad \max_{1 \leq u \leq \min \left\{ {j,k} \right\}}\left\{ {f(i-u, j-u) + a_{i-u+1} - b_{i-u+1}} \right\} + a_i - b_i \Big\} \\ \end{align*}$$

  可以发现,状态$f(i,j)$总是通过$f(i-u,j-u)$转移得到,而$i-u - (j-u) = i-j$,即只要满足状态第一维减去第二维等于$i-j$,那么就可以转移到$f(i,j)$。形象点理解的话,可以把$n \times k$个状态看作是一个矩阵,$f(i,j)$表示矩阵中第$i$行第$j$列的元素,那么$f(i,j)$就可以从其所在的对角线之上的所有格子(状态)转移过来,如下图:

  例如状态$f(7, 4)$就可以从$f(6,3)$,$f(5,2)$,$f(4,2)$转移过来。这有点类似于从某个前缀转移得到,不过在这里是斜线的前缀。一样的,我们可以用$i-j$来代表某条斜线,然后分别维护每条斜线关于$f(i,j)-a_{i+1}+b_{i+1}$,$f(i,j)+a_{i+1}+b_{i+1}$,$f(i,j)-a_{i+1}-b_{i+1}$,$f(i,j)+a_{i+1}-b_{i+1}$的前缀最大值,这样在状态转移时就可以降到$O(1)$。

  AC代码如下,时间复杂度为$O(n \cdot k)$:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 typedef long long LL;
 5 
 6 const int N = 3010;
 7 
 8 int a[N], b[N];
 9 LL f[N][N], g[N][4];
10 
11 void solve() {
12     int n, m;
13     scanf("%d %d", &n, &m);
14     for (int i = 1; i <= n; i++) {
15         scanf("%d", a + i);
16     }
17     for (int i = 1; i <= n; i++) {
18         scanf("%d", b + i);
19     }
20     memset(f, -0x3f, (n + 10) * (m + 10) << 3);
21     memset(g, -0x3f, (n + 10) * (m + 10) << 3);
22     f[0][0] = 0;
23     for (int i = 0; i <= n; i++) {
24         for (int j = 0; j <= min(i, m); j++) {
25             int k = i - j;
26             if (i) {
27                 f[i][j] = f[i - 1][j];
28                 f[i][j] = max(f[i][j], a[i] - b[i] + g[k][0]);
29                 f[i][j] = max(f[i][j], a[i] + b[i] + g[k][1]);
30                 f[i][j] = max(f[i][j], -a[i] - b[i] + g[k][2]);
31                 f[i][j] = max(f[i][j], -a[i] + b[i] + g[k][3]);
32             }
33             g[k][0] = max(g[k][0], f[i][j] + a[i + 1] - b[i + 1]);
34             g[k][1] = max(g[k][1], f[i][j] - a[i + 1] - b[i + 1]);
35             g[k][2] = max(g[k][2], f[i][j] + a[i + 1] + b[i + 1]);
36             g[k][3] = max(g[k][3], f[i][j] - a[i + 1] + b[i + 1]);
37         }
38     }
39     printf("%lld\n", f[n][m]);
40 }
41 
42 int main() {
43     int t;
44     scanf("%d", &t);
45     while (t--) {
46         solve();
47     }
48     
49     return 0;
50 }

 

解题思路

  Codeforces Round #892 (Div. 2) Editorial:Codeforces Round #892 (Div. 2) Editorial - Codeforces

标签:le,max,Monogonosity,Maximum,leq,right,test,left
From: https://www.cnblogs.com/onlyblues/p/17629372.html

相关文章

  • Maximum execution time of 300 seconds
    我在mysql用phpmyadmin导入数据的时候出现:Fatalerror:Maximumexecutiontimeof300secondsexceededinD:\XXX上网查了很多文章都说是把php.ini里面的 max_execution_time改大就可以,可我改了还是不行。。后来才查出原来是phpmyadmin自己的限制。找到phpmyadmin目录......
  • Leetcode No.53 Maximum Subarray
    参考资料:考点:子串&动态规划&[题干]Input:nums=[-2,1,-3,4,-1,2,1,-5,4]Output:6Explanation:Thesubarray[4,-1,2,1]hasthelargestsum6.1.心路历程这道题非常经典,蕴含的思想也是精巧无比。2.正解简单来说官解就是找到了题目中......
  • CF1857B Maximum Rounding 题解
    题面题目大意给定\(T\)组数据,每组数据一个自然数\(n\),可以多次选择第\(k\)位数进行四舍五入,求出四舍五入后该数的最大值。分析思路思想:贪心。这里给定了两种操作。四舍和五入。显然我们想要让最终的结果最大,我们的操作只能进行五入而不可以进行四舍。因为如果我们进行了......
  • 论文解读(MCD)《Maximum Classifier Discrepancy for Unsupervised Domain Adaptation》
    Note:[wechat:Y466551|付费咨询,非诚勿扰]论文信息论文标题:MaximumClassifierDiscrepancyforUnsupervisedDomainAdaptation论文作者:KuniakiSaito,KoheiWatanabe,Y.Ushiku,T.Harada论文来源:2018CVPR论文地址:download论文代码:download视屏讲解:click1介绍 ......
  • LeetCode 239. Sliding Window Maximum 单调队列
    Youaregivenanarrayofintegersnums,thereisaslidingwindowofsizekwhichismovingfromtheveryleftofthearraytotheveryright.Youcanonlyseetheknumbersinthewindow.Eachtimetheslidingwindowmovesrightbyoneposition.Return......
  • 918. Maximum Sum Circular Subarray (Medium)
    Description918.MaximumSumCircularSubarray(Medium)Givenacircularintegerarraynumsoflengthn,returnthemaximumpossiblesumofanon-emptysubarrayofnums.Acirculararraymeanstheendofthearrayconnectstothebeginningofthearray.F......
  • CodeForces 1810G The Maximum Prefix
    洛谷传送门CF传送门感觉是比较educational的题。拿到题目应该有一个大致思路,就是考虑最大前缀和的求法,再把它扔到状态里面。最大前缀和有两种求法:从前往后求,需要维护当前前缀和\(s\),当前最大前缀和\(mx\),需要记录两个变量,无法承受。从后往前求,只需记录当前最大前缀和......
  • nodejs sqlite报错 typeorm[ Expression tree is too large (maximum depth 1000)]
    最近在给公司开发一个工具时,使用SQLite,然后突然发现报错:(node:16195)UnhandledPromiseRejectionWarning:QueryFailedError:SQLITE_ERROR:Expressiontreeistoolarge(maximumdepth1000)athandler(/snapshot/server-work/node_modules/typeorm/driver/sqlite/Sql......
  • ERROR 1709 (HY000): Index column size too large. The maximum column size is 767
    MySQL版本5.6.35在一个长度为512字符的字段上创建uniquekey报错CREATEDATABASEdpcs_metadataDEFAULTCHARACTERSETutf8;select*frominformation_schema.SCHEMATA;+--------------+--------------------+----------------------------+------------------------+---......
  • [LeetCode] 1349. Maximum Students Taking Exam 参加考试的最大学生数
    Givena m *n matrix seats  thatrepresentseatsdistributions inaclassroom. Ifaseat is broken,itisdenotedby '#' characterotherwiseitisdenotedbya '.' character.Studentscanseetheanswersofthosesittingnexttothele......