You are given a 0-indexed integer array nums
. You have to partition the array into one or more contiguous subarrays.
We call a partition of the array valid if each of the obtained subarrays satisfies one of the following conditions:
- The subarray consists of exactly
2
equal elements. For example, the subarray[2,2]
is good. - The subarray consists of exactly
3
equal elements. For example, the subarray[4,4,4]
is good. - The subarray consists of exactly
3
consecutive increasing elements, that is, the difference between adjacent elements is1
. For example, the subarray[3,4,5]
is good, but the subarray[1,3,5]
is not.
Return true
if the array has at least one valid partition. Otherwise, return false
.
Example 1:
Input: nums = [4,4,4,5,6] Output: true Explanation: The array can be partitioned into the subarrays [4,4] and [4,5,6]. This partition is valid, so we return true.
Example 2:
Input: nums = [1,1,1,2] Output: false Explanation: There is no valid partition for this array.
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= 106
检查数组是否存在有效划分。
给你一个下标从 0 开始的整数数组 nums
,你必须将数组划分为一个或多个 连续 子数组。
如果获得的这些子数组中每个都能满足下述条件 之一 ,则可以称其为数组的一种 有效 划分:
- 子数组 恰 由
2
个相等元素组成,例如,子数组[2,2]
。 - 子数组 恰 由
3
个相等元素组成,例如,子数组[4,4,4]
。 - 子数组 恰 由
3
个连续递增元素组成,并且相邻元素之间的差值为1
。例如,子数组[3,4,5]
,但是子数组[1,3,5]
不符合要求。
如果数组 至少 存在一种有效划分,返回 true
,否则,返回 false
。
思路是动态规划,有点像爬楼梯那一类的题目。假设 input 数组的长度为 n,那么这里我也创建一个长度为 n + 1 的 dp 数组,dp 数组的定义为走到位置 i 的时候,这个长度为 i 的子数组能否组成一个有效划分。是否可以被有效划分的定义参照如上三点,有三种不同情况,可直接参见代码。
时间O(n)
空间O(n)
Java实现
1 class Solution { 2 public boolean validPartition(int[] nums) { 3 var n = nums.length; 4 var dp = new boolean[n + 1]; 5 dp[0] = true; 6 for (var i = 1; i < n; ++i) 7 if (dp[i - 1] && nums[i] == nums[i - 1] || 8 i > 1 && dp[i - 2] && (nums[i] == nums[i - 1] && nums[i] == nums[i - 2] || 9 nums[i] == nums[i - 1] + 1 && nums[i] == nums[i - 2] + 2)) { 10 dp[i + 1] = true; 11 } 12 return dp[n]; 13 } 14 }
标签:Partition,nums,There,数组,subarray,array,true,Check,dp From: https://www.cnblogs.com/cnoodle/p/17628363.html