序列学习
生活中的所有事物都是与时间相关的,也就形成了一个序列。为了对序列数据(文本、演讲、视频等)我们可以使用神经网络并导入整个序列,但是这样我们的数据输入尺寸是固定的,局限性就很明显。如果重要的时序特征事件恰好落在输入窗以外,就会产生更大的问题。所以我们需要的是:
标签:时序,学习,神经网络,序列,我们,输入 From: https://www.cnblogs.com/hahaah/p/17617851.html
生活中的所有事物都是与时间相关的,也就形成了一个序列。为了对序列数据(文本、演讲、视频等)我们可以使用神经网络并导入整个序列,但是这样我们的数据输入尺寸是固定的,局限性就很明显。如果重要的时序特征事件恰好落在输入窗以外,就会产生更大的问题。所以我们需要的是:
标签:时序,学习,神经网络,序列,我们,输入 From: https://www.cnblogs.com/hahaah/p/17617851.html